Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information

Ln³⁺ post-functionalized metal-organic framework for color tunable emission and highly-sensitivity sensing of toxic anions and small molecules

Ji-Na Hao and Bing Yan*

Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China

Figure S1. FTIR spectra of MIL-121 (black line) and Eu³⁺@MIL-121 (red line), the peaks at 1718 cm⁻¹ and 1603 cm⁻¹ are ascribed to the stretching vibration of C=O from the free and coordinated carboxyl, respectively.

Figure S2. N₂ adsorption–desorption isotherms of MIL-121 and Ln^{3+} @MIL-121 (Ln = Eu, Tb, Eu/Tb)

Figure S3. TGA curves of MIL-121 and Ln^{3+} @MIL-121. Thermogravimetric analysis (TGA) reveals that MIL-121 can be stable up to 400 °C. The TG curve of MIL-121 presents two events. The first one is the elimination of the trapped solvent in the pores (~2 wt%). After a plateau up to 400 °C, the decomposition of the organic ligand occurs (obs. 63 wt%; calc. 68.6 wt%).

	\bigcirc			
compounds	Al ³⁺ (ppm)	Eu ³⁺ (ppm)	Tb ³⁺ (ppm)	Al ³⁺ : Ln ³⁺
Eu ³⁺ @MIL-121	6.98	3.50		2:1
Tb ³⁺ @MIL-121	12.71		6.51	1.95:1
Eu ³⁺ /Tb ³⁺ @MIL-121	10.62	2.21	3.46	4.8:1:1.56

Table S1. The ICPMS results of Ln^{3+} @MIL-121 (Ln = Eu, Tb, Eu/Tb)

Figure S4. Excitation and emission spectra of MIL-121. The inset shows its corresponding CIE chromaticity diagram (λ_{ex} = 305 nm, CIE x: 0.204; CIE y: 0.139; λ_{ex} = 315 nm, CIE x: 0.2371; CIE y: 0.1502).

Table S2. Luminescence Lifetimes (τ) and Absolute Quantum Yields (ϕ) of Ln³⁺@MIL-121 (Ln = Eu, Tb, Eu/Tb).

Ln ³⁺	τ (μs)	Φ(%)	$\lambda_{ax}(nm)$	$\lambda_{om}(nm)$
Eu^{3+}	307	6	315	615
Tb^{3+}	538	11	318	545
Eu^{3+}/Tb^{3+}	280	8	317	615
Eu^{3+}/Tb^{3+}	399		317	545

Figure S5. The PXRD patterns of the Eu³⁺@MIL-121 treated by various anion aqueous solutions.

Figure S6. Responses of the fluorescence of pure ligand (H₄btec) towards aqueous solutions of F^- and $Cr_2O_7^{2-}$, respectively.

minersing in the aqueous solutions of various amons (λ_{ex} -515 min).				
Materials	τ (μs)			
K ₂ CO ₃	311			
H_2O	237.6			
KCl	184.5			
KI	188.6			
KNO_3	186.0			
KBr	183.2			
KF	50.9			
$K_2Cr_2O_7$	undetectable			

Table S3. The luminescence lifetimes for the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (615 nm) emission of Eu³⁺@MIL-121 after immersing in the aqueous solutions of various anions ($\lambda_{ex}=315$ nm).

Figure S7. Emission spectra and the K_{sv} curve (inset) of Eu³⁺@MIL-121 in aqueous solutions in the presence of various concentrations of F⁻ under excitation at 315 nm.

Figure S8. The PXRD patterns of Eu³⁺@MIL-121 treated by different solvents.