Electronic Supplementary Information (ESI) for

PVA-reinforced glutathione-Ag hydrogels and release of Ag nanoparticles and drugs by UV-triggered controllable disassembly

Wan Li, Xiaoping Zeng, Hong Wang*, Qin Wang and Yajiang Yang*

School of Chemistry and Chemical Engineering, Huazhong University of Science and

Technology, Wuhan 430074, China

Additional experimental data

Fig. S1 shows the effect of PVA content on the dynamic viscoelastic spectra of GSH-Ag. Both storage modulus (G') and loss modulus (G") of PVA/GSH-Ag gels distinctly increased in comparison with the unreinforced gels.

Fig. S1 Effect of PVA content on the dynamic viscoelastic spectra of GSH-Ag gels. The G' values were indicated using filled symbols and G" values were indicated using hollow symbols. PVA content was 0 wt% (\bigstar), 0.4 wt% (\blacktriangleright), 0.6 wt% (\blacktriangleleft), 0.8 wt% (\blacktriangledown), 1 wt% (\blacktriangle), 1.2 wt% (\bullet) and 1.4 wt% (O).

Fig. S2 shows SEM images of GSH-Ag gels before and after UV irradiation. As shown in Fig. S2a, three-dimensional network structure of GSH-Ag gels can be observed. After 12 h UV irradiation, the three-dimensional network structure was collapsed (Fig. S2b).

Fig. S2 SEM images of GSH-Ag gels before (a) and after (b) UV irradiation.