Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary information

PTFE supported gold nanoparticles as photocatalyst for oxidative esterification of aldehydes.

Maël Penhoat,^{†,⊥,*} ThéodoreVanbesien,^{†,⊥} Adrien Cocud,^{†,⊥} Ahmed Addad,^{‡,⊥} Hervé Vezin,^{§,⊥} and Christian Rolando^{†,⊥}

[†]Université de Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59000 Lille, France

[‡]Université de Lille, CNRS, UMR 8207, UMET, Unité Matériaux et Transformations, F-59000 Lille, France

[§] Université de Lille, CNRS, UMR 8516, LASIR Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France

¹Université de Lille, CNRS, FR 2638, Institut Eugène-Michel Chevreul, FR CNRS, F-59000 Lille, France

Figure SI 1. UV-Vis kinetic monitoring of AuNPs formation. The lower trace was obtained after 3 minutes. Each trace corresponds to a time increment of 1 minutes.

Table SI 1: Summary	of the kinetic study	during AuNPs s	synthesis using	UV-Vis and DLS
---------------------	----------------------	----------------	-----------------	----------------

Time	UV-Vis.		DLS				
(min)	λ _{max} (Rel. Abs)	FWMH (nm)	Population 1 nm (%mass)	Population 2 nm(%mass)	Average particle diameter (nm)		
0	///	///	///	///	///		
1	///	///	///	///	///		
2	///	///	///	///	///		
3	534 nm (0.504)	60.0	0.69 (99%)	31.0 (1%)	1.14		
4	534 nm (0.695)	58.5	2.27 (96%)	15.2 (4%)	1.25		
5	533 nm (0.817)	56.5	1.11 (98%)	19.3 (2%)	1.53		
6	533 nm (0.919)	55.0	1.11 (98%)	24.5 (2%)	1.73		
7	533 nm (1.016)	54.5	1.11 (98%)	31.0 (2%)	1.62		
8	533 nm (1.084)	54.0	0.88 (98%)	39.4 (2%)	1.54		
9	533 nm (1.158)	53.5	1.11 (98%)	31.0 (2%)	1.74		
10	533 nm (1.219)	50.0	2.27 (97%)	31.0 (2%)	1.5		
11	533 nm (1.259)	53.5	1.11 (98%)	31.0 (2%)	1.71		
12	533 nm (1.298)	53.5	1.11 (98%)	39.4 (2%)	1.84		
13	531 nm (1.317)	52.5	2.27 (97%)	31.0 (2%)	1.75		
14	531 nm (1.315)	51	1.72 (99%)	39.4 (1%)	1.92		
15	531 nm (1.306)	50.5	1.81 (99%)	30.0 (1%)	1.83		

Table SI 2: Study of AuNPs size vs irradiance of light source

AuNPs Average diameter (nm)	Power intensity (%)	Irradiance (mW.cm-1)
1.87	100	350
3.46	75	264
7.87	50	180
11 41	25	91

Figure SI 2. Study of AuNPs size vs irradiance of light source

Figure SI 3. TEM analysis observed on SiO₂-MPTES grid: (left) second larger population (average diameter = 30 nm); (right) example of large black vesicle supposed to correspond to first population.

Figure SI 4. XPS spectrum of AuNPs/PTFE catalyst (PTFE particle diameter: 200 µm)

Figure SI 5. Detailed view of AuNPs/PTFE catalyst XPS spectrum for C(1s) and Au(4f) regions.

Figure SI 6. Kinetic monitoring for oxidative esterification of benzaldehyde using different bases *t*-BuONa ($^{\odot}$), NaOH (O) and *t*-BuOK (\square).

Figure SI 7. Kinetic monitoring for oxidative esterification of benzaldehyde under various conditions: (\forall) AuNPs/PTFE: 0.5%, RT, H₂O₂ (1.5eq.); (\Box) AuNPs/PTFE: 1%, RT, H₂O₂ (1.5eq.); (\Box) AuNPs/PTFE: 1%, RT, H₂O₂ (1.5eq.); (\Box) AuNPs/PTFE: 1%, RT, green lamp, H₂O₂ (1.5eq.).

Aldehyde	σ	run n°	k obs	kobs average	$\log(k_X/k_H)$	
0.GH	-0.27	1	1.08E-05	0.15E.00	-0.648	
<i>p</i> -OCH ₃		2	7.49E-06	9.15E-00		
n CII	0.17	1	5.79E-06	1 00E 05	0.221	
p -C Π_3	-0.17	2	3.22E-05	1.90E-03	-0.331	
п	0	1	2.57E-05	4 07E 05	0	
н		2	5.57E-05	4.07E-03		
<i>p</i> -Br	0.23	1	1.64E-04	1 22E 04	0.513	
		2	1.01E-04	1.33E-04		
<i>p</i> -F	0.05	1	5.66E-05	6 25E 05	0.186	
		2	6.84E-05	0.23E-03		
p-Cl	0.22	1	1.44E-04	1.52E.04	0.575	
		2	1.62E-04	1.33E-04		

Table SI 3. Kinetic results for oxidative esterification of p-substituted benzaldehydes

GC/MS data: (confirmed with standards)

- Benzaldehyde :
 - GC: retention time: 20.40 min.
 - MS (EI) m/z (relative abundance%) = 51.1 (24), 77.1 (65), 105.1 (100)
- Methyl benzoate :
 - GC: retention time: 24.97 min
 - o MS (EI) m/z (relative abundance%) = 51.1 (24), 77.1 (65), 105.1 (100), 136.0 (38)
- 4-tolualdehyde :
 - GC: retention time: 24.66 min
 - \circ MS (EI) m/z (relative abundance%) = 65.1 (24), 91.1 (82), 119.1 (100)
- Methyl 4-methylbenzoate :
 - GC: retention time: 28.80 min
 - o MS (EI) m/z (relative abundance%) = 65.1 (16), 91.1 (56), 119.1 (100), 150.0 (44)
- 4-anisaldehyde :
 - GC: retention time: 30.17 min
 - o MS (EI) m/z (relative abundance%) = 63.1 (10), 77.7 (35), 92.1 (10), 107.1 (22), 135.1 (100)
- Methyl 4-methoxybenzoate :
 - GC: retention time: 33.54 min
 - o MS (EI) m/z (relative abundance%) = 63.1 (8), 77.7 (22), 92.1 (8), 107.1 (15), 135.1 (100), 166.1 (48)
- 4-chlorobenzaldehyde :
 - GC: retention time: 26.22 min
 - \circ MS (EI) m/z (relative abundance%) = 50.0 (14), 75.1 (24), 111.0 (36), 139.0 (100)
- Methyl 4-chlorobenzoate :
 - GC: retention time: 31.13 min
 - o MS (EI) m/z (relative abundance%) = 50.0 (8), 75.1 (22), 111.0 (32), 139.0 (100), 169.9 (45)
- 4-bromobenzaldehyde :
 - GC: retention time: 29.23 min
 - MS (EI) m/z (relative abundance%) = 50.1 (52.6), 51.1 (27.3), 73.1 (22.4), 74.1 (37.4), 75.1 (37.8), 76.1 (25.4), 77.1 (20.1), 155.1 (36.7), 157.0 (36.4), 183.0 (97.4), 184.1 (63.4), 185.0 (100), 186.0 (61.5)
- Methyl 4-bromobenzoate :
 - GC: retention time: 34.29 min
 - MS (EI) m/z (relative abundance%) = 50.1 (34.8), 73.1 (26.7), 74.1 (27.5), 75.1 (39.0), 76.1 (28.0), 135.2 (27.9), 147.2 (10.4), 155.1 (34.4), 157.1 (32.4), 183.0 (100), 185.0 (98.8), 214.0 (43.6), 216.0 (41.5)
- 4-fluorobenzaldehyde :
 - \circ GC: retention time: 19.99 min
 - o MS (EI) m/z= 50.1 (15.8), 74.1 (15.5),75.1 (34.3), 95.1 (59.1), 96.2 (10.3), 123.1 (100), 124.1 (48.2)
- Methyl 4-fluorobenzoate :
 - o GC retention time: 24.20 min
 - MS (EI) m/z (relative abundance%) = 73.2 (19.3), 74.1 (10.7), 75.1 (31.7), 95.1 (48.1), 123.1 (100), 153.1 (22.2), 154.0 (30.5)

Table SI 4.	Equilibrium	constants	calculation	details	determined by	¹ H NMR.

4-methoxybenzaldehyde		sigma	-0.27		
Aldehyde integration	Hemiacetal Integration	% Aldehyde	% Hemiacetal	Keq	$\log K_X/K_H$
1	0.05	95.24	4.76	0.050	-0.72
4-methylbenzaldehyde		sigma	-0.17		
Aldehyde integration	Hemiacetal Integration	% Aldehyde	% Hemiacetal	Keq	$\log K_X/K_H$
1	0.11	90.09	9.91	0.110	-0.37
benzaldehyde		sigma	0		
Aldehyde integration	Hemiacetal Integration	% Aldehyde	% Hemiacetal	Keq	$\log K_X/K_H$
1	0.29	77.52	22.48	0.290	0.05
4-fluorobenzaldehyde		sigma	0.05		
Aldehyde integration	Hemiacetal Integration	% Aldehyde	% Hemiacetal	Keq	$\log K_X/K_H$
1	0.3325	75.05	24.95	0.332	0.11
4-chlorobenzaldehyde		sigma	0.22		
Aldehyde integration	Hemiacetal Integration	% Aldehyde	% Hemiacetal	Keq	$\log K_X/K_H$
1	0.67	59.88	40.12	0.670	0.41
4-bromobenzaldehyde		sigma	0.23		
Aldehyde integration	Hemiacetal Integration	% Aldehyde	% Hemiacetal	Keq	$\log K_X/K_H$
1	0.869	53.50	46.50	0.869	0.52

Figure SI 8. XPS study of the C (1s) region before and after reaction and after recycling step.

Figure SI 9. XPS study of the Au (4f) region before and after reaction and after recycling step.

AuNPs/PTFE AuNPs/PTFE AuNPs/PTFE (Step 0)^a (Step 1)^b (Step 2)^c Orbital Element BE (eV) %_{atom} BE (eV) %_{atom} BE (eV) %_{atom} F 689.7 68.40 689.5 67.15 689.3 66.48 1s 0 532.5 0.058 532.9 0.25 532.8 0.28 1s1s292.5 292.4 292.4 С 31.56 32.39 33.04 1s285.2 285.2 285.2 $4f_{7/2}$ 84.8 85.2 85.1 0.020 Au 0.035 0.018 $4f_{5/2}$ 88.5 88.9 88.8

Table SI 5. Summary of XPS quantitative analyses of the AuNPs/PTFE surface at different stages

^a Step 0: AuNPs/PTFE after immobilisation on surface.

^b Step 1: AuNPs/PTFE after oxidative esterification.

^c Step 2: AuNPs/PTFE after recycling conditions (H₂O₂/ Acetone / Water).

(c)

Figure SI 10. Binocular loop study of the AuNPs/PTFE before reaction (a), after 3 successive reactions without recycling procedure (b), after 10 successive reactions using recycling procedure (c).

Eley-Rideal kinetic model

Figure SI 11. Eley-Rideal model fitting for benzaldehyde photocatalytic oxidative esterification reaction depending on catalyst loading kinetic study – comparison study between theoretical model and experimental data with fixed kr (1700 L.mol⁻¹.s⁻¹) and K_{Ads} (3.1 × 10⁻³) values according to the following equations:

$$r_0 = -\frac{dC_{Benz}}{dt} = k_r C_S C_{H202} \frac{K_{Ads} K_{Hemi} C_{Benz}}{(1 + K_{Ads} K_{Hemi} C_{Benz})}$$

With:

 k_r : Kinetic constant for hemiacetal anion oxydation on surface (L.mol⁻¹.s⁻¹)

 $K_{Ads:}$ Hemiacetal anion adsorption equilibrium constant

*K*_{*Hemi*: Hemiacetal anion formation equilibrium constant}

 $C_{S: \text{Surface gold atom concentration (mol.L⁻¹) (based on 1.87 nm diameter AuNPs for which <math>C_S = C(Au \ total)/2.5$ considering a spherical geometry)

 C_{H202} : Hydrogen peroxide concentration – supposed constant at 1.5 eq.

C_{Benz:} Benzaldehyde concentration

Because H_2O_2 is added continuously to the reaction medium, we considered its concentration constant along time, the kinetic model was consequently simplified and resulted in the following integrated form:

$$K_e C_{Benz} + \ln (C_{Benz}) = k_r C_S C_{H202} K_e t + K_e C_{0Benz} - \ln (C_{0Benz})$$

Giving:
$$C_{Benz} = K_e \omega \left\{ \frac{C_{0Benz}}{K_e} e^{\left(\frac{C_{0Benz} - k_r C_S C_{H202} K_e t}{K_e} \right)}{K_e} \right\}$$

With: $K_e = K_{Ads}K_{Hemi}$ and $\omega\{x\}$: Lambert function Winitzki approximated analytical form of the Lambert function (1% error) was used for the fitting: $W(x) \approx ln^{[m]}(1+x)(1-\frac{\ln(1+x)}{2+\ln(1+x)})$ See reference for the use of Winitzki approximation: Winitzki S. Lecture Notes Comput. Sci. 2003, 2667, 780-789. (ROWS) Jiedtif(2003) Science Science