Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

New J Chem RSC Publishing

Electronic Supplementary Information (ESI)

Sparingly fluorinated maltoside-based surfactants for membrane-protein stabilization

Ange Polidori,^a Simon Raynal,^a Laurie-Anne Barret,^{a,b} Mohamed Dahani,^a Cherone Barrot-

Ivolot,^a Colette Jungas,^b Erik Frotscher,^c Sandro Keller,^c Christine Ebel,^{d,e,f} Cécile

Breyton,^{d,e,f} & Françoise Bonneté^{a*}

^a Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-UM-ENSCM, Chimie BioOrganique et Systèmes Amphiphiles, Université d'Avignon, 301, rue Baruch de Spinoza, F84000 Avignon, France ^b Laboratoire de Génétique et de Biophysique des Plantes (L.G.B.P) UMR 7265 CNRS-CEA-AMU, Faculté des Sciences de Luminy,163 avenue de Luminy, F-13009 Marseille, France

^c Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany.

^d Université Grenoble Alpes, IBS, F-38044 Grenoble, France. ^e CNRS, IBS, F-38044 Grenoble, France. ^f CEA, IBS, F-38044 Grenoble, France

Content

¹H NMR, ¹⁹F NMR, and ¹³C NMR spectra for all compounds

Figure S1: Superposition of selected experimental and fitted sedimentation velocity profiles

- Figure S2: Autocorrelation functions G(t) and size distributions weighted by intensity or volume for $F_2H_9\beta M$, $F_4H_5\beta M$, and $F_6H_2\beta M$ in water
- Figure S3: SAXS patterns and pair distribution functions for $F_2H_9\beta M$, $F_4H_5\beta M$, and $F_6H_2\beta M$ in water
- Figure S4: Forward intensity I(0) as a function of total surfactant concentration for $F_2H_9\beta M$, $F_4H_5\beta M$, and $F_6H_2\beta M$ for CMC determination
- Table S1: Summary of surfactant properties

4.60 -81.06 NAME simon370 EXPNO 8 PROCNO Compound 2 : 19F NMR 1 Date_ 20131017 Time 14.38 INSTRUM spect 5 mm PABBO BB-PROBHD zgflqn 131072 PULPROG TD SOLVENT CDC13 NS 16 DS 4 75187.969 Hz SWH 0.573639 Hz FIDRES 0.8716788 sec AQ RĜ 574.7 DW 6.650 usec DE 6.50 usec TE 295.5 K D1 1.00000000 sec TDO 1 ----- CHANNEL f1 -----19F NUC1 14.00 usec P1 PL1 -3.00 dB 24.80876732 W PL1W 376.5548010 MHz SF01 65536 SI 376.5924600 MHz SF WDW EM SSB 0 LB 0.30 Hz GB 0 1.00 PC Т т -100 -105 -110 –125 ppm -80 -85 -90 -95 -115 -120 2.47 3.00 2.61

¹H NMR, ¹⁹F NMR and ¹³C NMR of F4H5Malt

¹H NMR and ¹³C NMR of compound 3

Figure S2. Autocorrelation functions G(t) (A,D,G) and size distributions weighted by intensity (B,E,H) or volume (C,F,I) for F₂H₉ β M, F₄H₅ β M, and F₆H₂ β M in water.

Figure S3. SAXS patterns (top) and pair distribution functions (bottom) for $F_2H_9\beta M$ (A,C), $F_4H_5\beta M$ (B,E), and $F_6H_2\beta M$ (C,F) in water.

Figure S4. Forward intensity *I*(0) as a function of total surfactant concentration for $F_2H_9\beta M$, $F_4H_5\beta M$, and $F_6H_2\beta M$ for CMC determination.

Table S1. Surfactant properties.

Surfactant (abbreviation)	Η ₁₂ βΜ	F ₂ H ₉ βM	F₄H₅βM	$F_6H_2\beta M$
Formula	$C_{24}H_{46}O_{11}$	$C_{23}H_{39}F_5O_{11}$	$C_{21}H_{31}F_9O_{11}$	$C_{20}H_{25}F_{13}O_{11}$
Formula molar mass (g/mol)	510.6	586.5	630.5	688.4
Head formula	$C_{12}H_{21}O_{11}$	$C_{12}H_{21}O_{11}$	$C_{12}H_{21}O_{11}$	$C_{12}H_{21}O_{11}$
Head molar mass (g/mol)	341.3	341.3	341.3	341.3
Chain formula	$C_{12}H_{25}$	$C_{11}H_{18}F_5$	$C_9H_{10}F_9$	$C_8H_4F_{13}$
Chain molar mass (g/mol)	169.3	245.2	289.2	347.1
CMC from TS (mM / gL ⁻¹)	0.17 / 0.087	1.14 / 0.67	2.16 / 1.36	0.71/0.49
∂ <i>n/∂c</i> (mL/g) from AUC		0.107	0.078	0.071
$\mathcal{E}_{0.1\%}$ L/(g cm) from AUC		0.012	0.07	0.009
\overline{V} (cm ³ g ¹) from density mass	0.810	0.740	0.622	0 5 79
$\frac{v}{V}$ (cm ³ g ⁻¹) from composition	0.819	0.749	0.032	0.578
V (cm ³ g ²) from composition	CO 4 4	0.718	0.629	0.564
V_{monomer} (A ³) from density meas.	694.4	729.4	001.5	550.5
V_{head} (A ³) from chem. formula	348	348	348	348
V _{chain} (A ³) from chem. formula	346.5	381.4	313.5	312.6
Total number of electrons	278	310	326	350
Head number of electrons	181	181	181	181
Chain number of electrons	97	129	145	169
α^{elect} (e ⁻¹ Å ³) from density mass	0.400	0.425	0.493	0 520
ρ^{elect} (c/A) for polar head	0.520	0.520	0.400	0.520
ρ^{elect} (c/A) for polar field	0.280	0.328	0.320	0.520
p^{elect} (e/Å) for H ₂ O	0.280	0.338	0.402	0.224
	0.554	0.554	0.334	0.554
Data from SAXS				
<i>M</i> _w (kDa)	65	38	32	>500
N _{agg} from I(0)	125	65	50	>700
R _G (nm)	3.2	2.5	3.2	15.8
Data from DLS				
$D_{\rm max}$ (nm)	8.0	7.6	10.8	57
R _H (nm)	3.6	2.7	4.6	15.6
Data from 01/*				
		17./ 2	0.1.2	
κ _s κς		-1/+/-2	U +/- 3	0.20 . / 1*
5 ₀ , S _{max} * S		4.20 +/-0.02	b.83 +/-U.1	U 28 +/-1*
Nagg		8/	154	1/50*
<i>f/f</i> min		1.1	1.6	2.4*

 N_{agg} and f/f_{min} are derived from the related s and R_{H} from DLS.

NJC