Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information

One-step synthesis of Au nanoparticles-graphene composite using tyrosine: Electrocatalytic and catalytic properties

Qi Wang,^{1,2} Qian Wang,^{1,2} Musen Li,¹ Sabine Szunerits² and Rabah Boukherroub^{2*}

¹Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Shandong University, Jinan 250061, China

²Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, Université Lille1, Avenue Poincaré, BP 60069, 59652 Villeneuve d'Ascq, France

E-mail: rabah.boukherroub@iemn.univ-lille1.fr

Figure S1. SEM images of the rGO/Au NPs/Tyr nanocomposite.

Element	Weight %	Atomic%	
C K	38.51	73.69	
O K	14.50	20.83	
Au M	46.99	5.48	
Totals	100.00	100.00	

Figure S2. SEM and EDX analysis of rGO/Au NPs/Tyr.

Figure S3. UV/Vis absorption spectrum of tyrosine (50 μ M) in water

Figure S4: Transmission FTIR spectrum of tyrosine.

Figure S5: Cyclic voltammograms of GC electrode in N_2 -saturated 0.1 M PBS solution (pH 7.4) in the absence (a) and presence (b) of 10 mM H_2O_2 ; scan rate: 50 mV/s.

Electrode	Detection	Sensitivity	Linear range	Ref.
	limit (µM)	$(\mu A m M^{-1} cm^{-1})$	(mM)	
		2)		
AuNPs/PDDA/rGO/GC ^a	0.44	-	0.0005-0.5	1
Au NPs/SGS/GC ^b	0.25	3.21	2.3-16	2
AuNPs/rGO paper	2	236.8	0.005-8.6	3
AuNPs/rGO/GC	6	3	0.020-0.280	4
AuNPs/POM/rGO ^c	1.54	58.87	0.005-18	5
AuNPs/EPG/FTO ^d	0.1	75.9	0.0005-4.9	6
rGO/Nafion/AzI/AuNPs/GCe	10	-	0.03-5	7
AuNPs/MnO2/rGO/GC	0.05	980	0.022-12.6	8
PtAuNPs/rGO/CNTs ^f	0.6	313.4	0.002-8.561	9
AuNPs/rGO/GC membrane	6.2	5.3	0.25-22.5	10
Ag-Au-rGO/GC	1	-	0.1-5	11
Au-MWCNTs-sG@GCE ^g	13	-	1-62	12
AuNPs/rGO/GCE	1.5	-	0.1-9	13
Au NPs–Gr	0.03	-	0.0001-0.07	14
Au NPs-N-GQDs ^h	0.12	186.22	0.00025-13.327	15

enzymatic H₂O₂ sensors

rGO: reduced graphene oxide

Au NPs: gold nanoparticles

^aPDDA: poly(diallyldimethyl ammonium chloride)

^bSGS: sulfonated graphene sheets

^cPOM: polyoxometalate

^dEPG: embedded porous graphene

eAzI: Azur I

^fCNTs: carbon nanotubes

^gMWCNTs-sG: Au nanoparticles-decorated multiwalled carbon nanotube-solar exfoliated

graphene

^hAu NPs-N-GQDs:Au nanoparticles (Au NPs) on nitrogen-doped graphene quantum dots

Catalyst	Rate constant	Reference
Au nanoparticles/GO	18.8 x10 ⁻² min ⁻¹	16
Au nanoplates/GO	4.67 x 10 ⁻² min ⁻¹	
Au/rGO hybrid nanostructures	0.309 min ⁻¹	17
GO-Fe ₃ O ₄ /Au NPs	3.22 x 10 ⁻² s ⁻¹	18
Au-PRGO	8.77 x 10 ⁻³ s ⁻¹	19
rGO-Au hybrid film	3.33 s ⁻¹ g ⁻¹	20
Au-Ag/GO	3 x 10 ³ s ⁻¹ g ⁻¹	21
GO/SiO ₂ /Au NPs	1.04 min ⁻¹	22
AuNPs/TWEEN/GO	25.37 x 10 ⁻² min ⁻¹	23
AuNP/PQ11/GN	30.58 x 10 ⁻² min ⁻¹	24
Au/GO	0.368 min ⁻¹	25
Au/graphene hydrogel	31.7 s ⁻¹ g ⁻¹	26
Au/SRG	60 h ⁻¹	27
graphene/PDA-Au	0.12-0.225 min ⁻¹	28
GO-N/Au	0.11015 min ⁻¹	29
Au/TP-GS	$0.939 \times 10^{-2} \text{ s}^{-1}$	30
Au/PDIL-GS	6.72×10 ⁻³ s ⁻¹	31
Au-NPs@NH ₂ /GNS-PO ₃ H ₂ composite	0.325 min ⁻¹	32
bio-AuNPs/rGO	138.45 s ⁻¹ M ⁻¹	33
Au@HGN	1.12 min ⁻¹	34

 Table S2. Comparison of catalytic performance of Au NPs/rGO-based catalysts for the reduction of nitrophenol

Au-PRGO: Au nanoparticles-partially reduced graphene oxide

GN: graphene nanosheets

PQ11: poly [(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-

(1-vinylpyrrolidone)]

Au/SRG: Au decorated thiol-functionalized reduced graphene oxide

PDA: polydopamine

Au/TP-GS: Au nanoparticles anchored to thiophenol covalently functionalized graphene sheets

Au/PDIL-GS: Ionic liquid of 3,4,9,10-perylenetetracarboxylic acid-noncovalent functionalized graphene

Au-NP@NH₂: amine-functionalized Au-NP

GNS-PO₃H₂: phosphonate-functionalized graphene nanosheets

HGN: hollow graphene nanoshell

References

- ¹ Y. Fang, S. Guo, C. Zhu, Y. Zhai, and E. Wang, *Langmuir*, 2010, **26**, 11277-11282.
- ² S. J. Li, Y. F. Shi, L. Liu, L. X. Song, H. Pang, and J. M. Du, *Electrochim. Acta*, 2012, 85, 628-635.
- ³ F. Xiao, J. Song, H. Gao, X. Zan, R. Xu, and H. Duan, *ACS Nano*, 2012, **6**, 100-110.
- ⁴ J. Hu, F. Li, K. Wang, D. Han, Q. Zhang, J. Yuan, and L. Niu, *Talanta*, 2012, **93**, 345-349.
- ⁵ R. Liu, S. Li, X. Yu, G. Zhang, S. Zhang, J. Yao, B. Keita, L. Nadjo, and L. Zhi, *Small*, 2012, 8, 1398-1406.
- ⁶ Q. Xi, X. Chen, D. G. Evans, and W. Yang, *Langmuir*, 2012, **28**, 9885–9892.
- ⁷ Y. Zhang, Y. Liu, J. He, P. Pang, Y. Gao, and Q. Hu, *Electrochim. Acta*, 2013, **90**, 550-555.
- ⁸ L. Wang, M. Deng, G. Ding, S. Chen, and F. Xu, *Electrochim. Acta*, 2013, **114**, 416-423.
- ⁹ D. Lu, Y. Zhang, S. Lin, L. Wang, and C. Wang, *Talanta*, 2013, **112**, 111-116.
- ¹⁰ P. Zhang, X. Zhang, S. Zhang, X. Lu, Q. Li, Z. Su, and G. Wei, *J. Mater. Chem. B*, 2013, **1**, 6525-6531.
- ¹¹ G. G. Gnana kumar, K. J. Babu, K. S. Nahm, and Y. J. Hwang, *RSC Adv.*, 2014, **4**, 7944-7951.
- ¹² P. Nayak, P. N. Santhosh, and S. Ramaprabhu, *RSC Adv.*, 2014, **4**, 41670-41677.
- ¹³ X. Qin, Q. Li, A. M. Asiri, A. O. Al-Youbi, and X. Sun, *Gold Bull.*, 2014, **47**, 3-8.
- ¹⁴ H. Liu, X. Su, C. Duan, X. Dong, S. Zhou, and Z. Zhu, *J. Electroanal. Chem.*, 2014, 731, 36-42.
- ¹⁵ J. Ju and W. Chen, *Anal. Chem.*, 2015, **87**, 1903-1910.
- ¹⁶ Y. Zhang, S. Liu, W. Lu, L. Wang, J. Tian, and X. Sun, *Catal. Sci. Technol.*, 2011, 1, 1142-1144.
- ¹⁷ B. K. Barman and K. K. Nanda, *Chem. Commun.*, 2013, **49**, 8949-8951.

- ¹⁸ J. Hu, Y.-l. Dong, X.-j. Chen, H.-j. Zhang, J.-m. Zheng, Q. Wang, and X.-g. Chen, *Chem. Eng. J.*, 2014, **236**, 1-8.
- ¹⁹ M.-Q. Yang, X. Pan, N. Zhang, and Y.-J. Xu, *CrystEngComm*, 2013, **15**, 6819-6828.
- ²⁰ K. Bramhaiah and N. S. John, *RSC Adv.*, 2013, **3**, 7765-7773.
- ²¹ T. Wu, J. Ma, X. Wang, Y. Liu, H. Xu, J. Gao, W. Wang, Y. Liu, and J. Yan, *Nanotechnology*, 2013, **24**, 125301.
- ²² C. Zhu, L. Han, P. Hu, and S. Dong, *Nanoscale*, 2012, **4**, 1641-1646.
- ²³ W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, S. Liu, Y. Luo, and X. Sun, *J. Hazard. Mater.*, 2011, **197**, 320-326.
- ²⁴ X. Qin, W. Lu, Y. Luo, G. Chang, A. M. Asiri, A. O. Al-Youbi, and X. Sun, J. Nanosci. Nanotechnol., 2012, 12, 1-7.
- ²⁵ T. Wu, L. Zhang, J. Gao, Y. Liu, C. Gao, and J. Yan, *J. Mater. Chem. A*, 2013, 1, 7384-7390.
- ²⁶ J. Li, C.-y. Liu, and Y. Liu, J. Mater. Chem., 2012, **22**, 8426-8430.
- ²⁷ W. Liu, D. Sun, J. Fu, R. Yuan, and Z. Li, *RSC Adv.*, 2014, **4**, 11003-11011.
- ²⁸ J. Luo, N. Zhang, R. Liu, and X. Liu, *RSC Adv.*, 2014, **4**, 64816-64824.
- ²⁹ H. Yao, T.-C. Huang, and H.-J. Sue, *RSC Adv.*, 2014, **4**, 61823-61830.
- ³⁰ R. Ren, S. Li, J. Li, J. Ma, H. Liu, and J. Ma, *Catal. Sci. Technol.*, 2015, **5**, 2149-2156.
- ³¹ S. Li, S. Guo, H. Yang, G. Gou, R. Ren, J. Li, Z. Dong, J. Jin, and J. Ma, *J. Hazard. Mater.*, 2014, **270**, 11-17.
- ³² X. Gao, G. Xu, Y. Zhao, S. Li, F. Shi, and Y. Chen, *RSC Adv.*, 2015, **5**, 88045-88051.
- ³³ B. Dong, G. Liu, J. Zhou, A. Wang, J. Wang, R. Jin, and H. Lv, *RSC Adv.*, 2015, 5, 97798-97806.
- ³⁴ H. Liu, J. Wang, Z. Feng, Y. Lin, L. Zhang, and D. Su, *small*, 2015, **11**, 5059-5064.