Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information

Cerium doped nickel-oxide nanostructures for riboflavin biosensing and antibacterial

applications

Muthukumaran P^1 , Chikkili Venkateswara Raju², Sumathi C¹, S, Ravi G³, Solairaj D⁴, Rameshthangam P⁴, Wilson J^{1,#} Subbiah Alwarappan^{5,#} Sathish Rajendran⁵

 ¹ Polymer Electronics Lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi-630004, Tamilnadu, India. E-mail: <u>wilson.j2008@yahoo.com</u>
 ² Electrodics and Electrocatalysis Division, CSIR- Central Electrochemical Researchinstitute Karaikudi , Tamilanadu, India- 630006

³ Department of Biotechnology, DDE (Science Wing), Alagappa University, Karaikudi Tamil Nadu 630 004, India

⁴ Photonic Crystals Lab, Department of Physics, Alagappa University, Karaikudi-630004, Tamilnadu, India

⁵ Bio-Electrochemistry Group, CSIR-Central Electrochemical Research Institute, Karaikudi 630 003, Tamilnadu, India.

Figure S1.Amperometric i–t curve for the addition of 1 mM of RF and 10 mM (10 fold) serotonin, epinephrine, cystamine, dopamine, tyrosine and final addition of 1 mM of RF at 5 wt.% Ce-NiO modified electrode in PBS (pH 7.2). Its applied potential -0.50 V.

Figure S2.100 cycles of CVs of the modified GCE in presence of 1.0 mM RF 0.1 M KCl at a scan rate of 100 mV s⁻¹

Figure S3. Amperometric responses at 5wt. % of Ce doped NiO modified GCE upon periodical addition of RF into 0.1M PBS at -0.5V

Table S1 Crystallite	Size for different	percentage of Ce do	ping with NiO Samples
2			

S.No	Sample	Size in		
		nm		
1	Pure NiO	90		
2	1 wt.% of Ce doped NiO	85		
3	3 wt.% of Ce doped NiO	74		
4	5 wt.% of Ce doped NiO	72		
5	7 wt.% of Ce doped NiO	57		
6	9 wt.% of Ce doped NiO	41		

 Table S2 Zone of inhibition (ZI), MIC and MBC values of sample a-f against various bacterial strains

Bacteria	Sample a		Sample b		Sample c		Sample d		Sample e		Sample f							
	ZI (mm)	MIC (µg/m L)	MBC (µg/m L)	ZI (mm)	MIC (µg/m L)	MBC (µg/ mL)	ZI (mm)	MIC (µg/m L)	MBC (µg/ mL)	ZI (mm)	MIC (µg/m L)	MBC (µg/ mL)	ZI (m m)	MIC (µg/m L)	MBC (µg/ mL)	ZI (m m)	MIC (µg/m L)	MBC (µg/ mL)
K. pneumonia e	-	>100	>10 0	-	>100	>10 0	9	70	80	11	30	40	10	30	40	-	>100	>10 0
S. typhi	13	30	30	9	80	90	15	30	40	17	20	30	15	20	30	12	40	50
P. aeruginosa	12	50	60	10	60	70	11	40	50	14	30	40	11	50	60	10	60	70
B. cereus	12	50	60	10	60	60	12	50	50	14	30	40	11	30	40	10	40	40
B. subtilis	17	20	30	15	20	20	20	10	20	22	10	10	17	10	20	15	20	30
S. aureus	17	20	20	14	20	30	15	20	20	18	10	20	16	20	30	13	30	30

* The values are mean of triplicate experiments

Electrode	limit o	f detection	linear range	reference
		5 0 · · 10 ⁸ 1		F13
(1) $P_{3M1/C}$	JCE	$5.0 \times 10^{-6} \text{ mol}$	$L^{-1} = 1.0 \times 10^{-7} - 2.0 \times 10^{-4} \text{ mol } L^{-1}$	[1]
(2) Aza / P(JPE NT	0.2 ng cm^{-1}	0.5 ng cm^{-3} to $70\mu\text{g cm}^{-3}$	[2]
(3) DNA/CI	NI	$0.2 \text{ ng } L^{-1}$	$5.31 \times 10^{-13} \text{ mol } \text{L}^{-1}$ -	[3]
(4) C -18/A	uE	2.3µg mL ⁻¹	-	[4]
(5) CILE		0.1 nM	0.8 - 110 nM	[5]
(6) Ag amal	lgam film	0.009	0.05 - 3	[6]
(7) AgSAEs	8 8.2 × 1.3 ×	10 ⁻¹⁰ mol L ⁻¹ (m 10 ⁻⁹ mol L ⁻¹ (p-A	– AgSAE) and AgSAE) -	[7]
8) WO ₃ – Ti	O ₂ / ITO	$1.87 \times 10^{-7} \mathrm{M}$	3.23×10^{7} to 4.0×10^{5} M	[8]
(9) Ds-DNA/	PCE ().34 μg mL ⁻¹	$0.5 - 70 \ \mu g \ mL^{-1}$	[9]
10) Cr- SnO2	/ GCE	107 nM	0.2×10^{-6} to 1.0×10^{-4} M	[10]
1) α - Fe ₂ O ₃ /	MWCNT/	AuNP 6nM	50×10^{-9} to 600×10^{-6}	[11]

Table S3 Comparison of the efficiency of reported electrochemical methods in the determination of RF

References:

- Zhang, H.; Zhao, J.; Liu, H.; Wang, H.; Liu, R.; Liu, J.; Application of Poly (3methylthiophene) Modified Glassy Carbon Electrode as Riboflavin Sensor. *Int. J. Electrochem. Sci.* 2010, *5*, 295
- (2) Kotkar, M.; Desai P,B.; Srivastava, A,K. Behavior of riboflavin on plain carbon paste and aza macrocycles based chemically modified electrodes, *Sensor Actua*. B 2007,124, 90.
- (3) Ly,Y.; Yoo, H.S.; Ahn, J.Y.; Nam, K.H. Pico molar assay of riboflavin in human urine using voltammetry, *Food Chem.* **2011**, 127, 270.
- (4) Balco, E.; Dominguez, C.S.H.; Hernandez, Alkanethiols, J.V. Modified Gold Electrodes for Selective Detection of Molecules with Different Polarity and Molecular Size. Application to Vitamin B2 Analysis *Electroanalysis* 2009, 21, 495.
- (5) Safavi, A.; Maleki, N.; Ershadifar, H.; Tajabadi, F. Development of a sensitive and selective Riboflavin sensor based on carbon ionic liquid electrode, *Anal. Chim. Acta* 2010, 674, 176.
- (6) Bas .S.Lakubowska, S.; Girski, M. Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B₁ and B₂, *Talanta* 2011, 84,1032.
- (7) Bandzuchova, L.; Selesovska, R.; T.Navratil, T.; Chylkov, J. Voltammetric monitoring of electrochemical reduction of riboflavin using silver solid amalgam electrodes, *Electrochim. Acta* 2012, 75,316
- (8) Li, Y.; Hsu, P. C.; S.M. Chen. Multi-functionalized biosensor at WO₃–TiO₂ modified electrode for photoelectrocatalysis of norepinephrine and riboflavin, *Sensor Actuat. B* 2012, 174, 427.
- (9) Ensafi, Heydari-Bafrooei, E.; Amini, M. DNA-functionalized biosensor for riboflavin based electrochemical interaction on pretreated pencil graphite electrode, *Biosens. Bioelectron.* 2012,31,376.

- (10)Lavanya, N.; Radhakrishnan,S.; Sekar,C.; Navaneethan, M. Fabrication of Cr doped SnO₂ nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals, *Analyst* **2013**, 138, 2061.
- (11)Sumathi, C.; Muthukumaran, P.; Radhakrishnan, S.; Ravi,G.; Wilson, J. Riboflavin detection by α-Fe₂O₃/MWCNT/AuNPs-based composite and a study of the interaction of riboflavin with DNA. *RSC Adv.* **2015**, 5, 17888-17896

Table S4 Determination of the riboflavin content in commercial pharmaceutical products and milk powder by SWV on the 5 wt. % of Ce-doped NiO modified electrode.

Sample	Reported content	Content found	Recovery		
	(mg)	(mg)			
			%		
multivitamin	1.6	1.45	90.6		
tablet					
multivatimin	2	1.8	90		
capsule					
Milk powder	0.78	0.70	89.7		
-					