## Crystal growth, structure and optical properties of a new acentric crystal La<sub>2</sub>Al<sub>4.68</sub>B<sub>8</sub>O<sub>22</sub> with short UV absorption edge

Tittle: Crystal growth, structure and optical properties of a new acentric crystal La<sub>2</sub>Al<sub>4.68</sub>B<sub>8</sub>O<sub>22</sub> with short

## UV absorption edge

Journal: New Journal of Chemistry

Author: Shu Guo<sup>a,b</sup>, Lijuan Liu,<sup>a</sup> Mingjun Xia,<sup>a</sup> Xiaoyang Wang<sup>a</sup>, Lei Bai<sup>a</sup>, Bo Xu,a,b Qian Huang<sup>a,b</sup> and Chuangtian Chen<sup>a</sup>

## Affiliation:

a Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. b University of Chinese Academy of Sciences, Beijing 100049, P. R. China Corresponding author: llj@mail.ipc.ac.cn Tel: 86–10–82543710 Supporting information

## CONTENTS

Table S1. Crystal data and structure refinements for La<sub>2</sub>Al<sub>4.68</sub>B<sub>8</sub>O<sub>22</sub>.

Table S2. Selected interatomic distances (Å) for La<sub>2</sub>Al<sub>4.68</sub>B<sub>8</sub>O<sub>22</sub>.

Table S3. Positional coordinates for La<sub>2</sub>Al<sub>4.68</sub>B<sub>8</sub>O<sub>22</sub>.

Table S4 Measured and calculated refractive indexes of La2Al4.68B8O22

Figure S1. Comparison of powder X-ray diffraction patterns of LaAB and calcined melt.

Figure S2. The temperature field in the axis direction

Figure S3. IR spectrum of LaAB..

Figure S4. Rocking curve of the (001) face of the as-grown crystal.

|                              | La2Al4.68B8O22 |
|------------------------------|----------------|
| Fw                           | 842.57         |
| T(K)                         | 153.1500       |
| $a(\text{\AA})$              | 4.6149(7)      |
| $b(\text{\AA})$              | 4.6149(7)      |
| $c(\text{\AA})$              | 18.720(4)      |
| α(°)                         | 90             |
| β (°)                        | 90             |
| γ (°)                        | 120            |
| Space group                  | P-62m          |
| $V(\text{\AA}^3)$            | 345.27(15)     |
| Ζ                            | 1              |
| $\rho_c(g/cm^3)$             | 4.052          |
| $\mu(\mathrm{cm}^{-1})$      | 6.557          |
| $R(F)^{a}$                   | 0.0379( 403)   |
| $R_{ m W}(F_{ m o}{}^2)^{b}$ | 0.1322( 475)   |

Table S1 Crystal data and structure refinements for  $La_2Al_{4.68}B_8O_{22}$ 

| La1—O3  | 2.464(3) | Al1—Al1 | 2.471(3) |
|---------|----------|---------|----------|
| La1—O3  | 2.464(3) | Al1—Al1 | 2.471(3) |
| La1—O3  | 2.464(3) | O1—Al1  | 1.799(5) |
| La1—O3  | 2.464(3) | O1—Al1  | 1.799(5) |
| La1—O3  | 2.464(3) | O2—B1   | 1.442(9) |
| La1—O3  | 2.464(3) | O2—Al1  | 1.844(3) |
| La2—O4  | 2.493(3) | O2—All  | 1.844(3) |
| La2—O4  | 2.493(3) | O3—B1   | 1.490(3) |
| La2—O4  | 2.493(3) | O3—B1   | 1.490(3) |
| La2—O4  | 2.493(3) | O3—La1  | 2.464(3) |
| La2—O4  | 2.493(3) | O4—B2   | 1.491(3) |
| La2—O4  | 2.493(3) | O4—B2   | 1.491(3) |
| Al1—01  | 1.799(5) | O5—B2   | 1.410(9) |
| Al1—02  | 1.844(3) | O5—Al1  | 1.851(3) |
| Al1—02  | 1.844(3) | O5—Al1  | 1.851(3) |
| Al1—05  | 1.851(3) | B1—O3   | 1.490(3) |
| Al1—05  | 1.851(3) | B1—O3   | 1.490(3) |
| Al1—Al1 | 2.471(3) | B2—O4   | 1.491(3) |
| Al1—Al1 | 2.471(3) | B2—O4   | 1.491(3) |

 Table S2 Selected interatomic distances (Å) for La2Al4.68B8O22

| Atom | Wyckoff | x/a        | y/b        | z/c         |
|------|---------|------------|------------|-------------|
| La1  | 1a      | 0          | 0          | 0           |
| La2  | 1b      | 0          | 0          | 1/2         |
| Al1  | 6i      | 0.3896(11) | 0.3896(11) | 0.24972(6)  |
| 01   | 2e      | 0          | 0          | 0.2525(5)   |
| O2   | 4h      | 2/3        | 1/3        | 0.1873(3)   |
| O3   | 6i      | 0.5760(8)  | 0          | 0.08003(15) |
| O4   | 6i      | 0.4294(7)  | 0          | 0.41920(14) |
| O5   | 4h      | 2/3        | 1/3        | 0.3127(2)   |
| B1   | 4h      | 2/3        | 1/3        | 0.1103(4)   |
| B2   | 4h      | 2/3        | 1/3        | 0.3880(4)   |

 $\label{eq:stable} \textbf{Table S3.} Positional coordinates for La_2Al_{4.68}B_8O_{22}.$ 

| λ     | no      |         | ne      |         | Δn      |
|-------|---------|---------|---------|---------|---------|
| (nm)  | Exp     | Cal     | Exp     | Cal     |         |
| 253.7 | 1.81701 | 1.81698 | 1.79529 | 1.79524 | 0.02172 |
| 363   | 1.75810 | 1.75851 | 1.73947 | 1.73997 | 0.01863 |
| 404.7 | 1.74919 | 1.74902 | 1.73098 | 1.73092 | 0.01821 |
| 435.8 | 1.74391 | 1.74379 | 1.72607 | 1.72592 | 0.01784 |
| 480   | 1.73820 | 1.73811 | 1.72079 | 1.72050 | 0.01741 |
| 546.1 | 1.73218 | 1.73208 | 1.71488 | 1.71475 | 0.0173  |
| 587.5 | 1.72938 | 1.72927 | 1.71218 | 1.71208 | 0.0172  |
| 643.8 | 1.72629 | 1.72623 | 1.70926 | 1.70919 | 0.01703 |
| 706.5 | 1.72352 | 1.72355 | 1.70678 | 1.70667 | 0.01674 |
| 852.1 | 1.71888 | 1.71900 | 1.70267 | 1.70246 | 0.01621 |
| 1014  | 1.71511 | 1.71529 | 1.69839 | 1.69911 | 0.01672 |
| 2325  | 1.68862 | 1.68859 | 1.67689 | 1.67682 | 0.01173 |

Table S4 Measured and calculated refractive indexes of  $La_2Al_{4.68}B_8O_{22}$ 



Fig. S1. Comparison of powder X-ray diffraction patterns of LaAB and calcined melt.



Fig.S2 The temperature field in the axis direction.



Fig. S3 IR spectrum of LaAB



Fig .S4 Rocking curve of the (001) face of the as-grown crystal.