Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Appendix A. Supplementary Information for

Chromium scavenging ability of Silver Nanoparticles in Human Erythrocytes, real samples and its effect on Catalase Enzyme.

Wasia Rasheed^a, Muhammad Raza Shah^{*b}, Mehdi Hasan Kazmi^a, Tabassum Mahboob^c, Madiha Rehman^c

^a Department of Applied Chemistry and Chemical Technology, University of Karachi, Karachi 75270, Pakistan

^b H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

^c Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan

Contents

FTIR spectrum of 6-aminopenicillanic acid (Figure S1)page S2
FTIR spectrum of 6APA-AgNPs (Figure S2)page S3
Effect of high ionic strength environment on SPR of 6APA-AgNPs (Figure S3)page S4
Effect of storage period of 20 days on SPR of 6APA-AgNPs (Figures S4)page S4
Effect of heating on SPR of 6APA-AgNPs (Figure S5)page S5
Benesi-Hildebrand plot of equation 1 (Figure S6)page S6
Benesi-Hildebrand plot of equation 2 (Figure S7)page S6
Effect of various pH on SPR of 6APA-AgNPs (Figures S8)page S7
Spectral response of 6APA-AgNPs-Cr (VI) complex at various pH (Figure S9) page S7
FTIR spectrum of 6APA-AgNPs-Cr (VI) complex(Figure S10)page S8

Fig. S1: Fourier Transform infrared spectrum of 6-aminopenicillanic acid.

Fig. S2: Fourier Transform infrared spectrum of freeze dried 6APA-AgNPs separated from the mother liquor after centrifugation at 15000 rpm for 30 minutes.

Figure S3: Modulation of absorption spectrum of synthesized functional conjugates of silver with 6-aminopenicillanic acid (150 μ M) upon the addition of 7 and 27 mM, 2 and 3 M of NaCl in water.

Figure S4: Modulation in Surface plasmon resonance of 6APA-AgNPs on storage for 20 days.

Figure S5: Modulation in Surface plasmon resonance of 6APA-AgNPs on refluxing the freshly prepared sample for 1 hour.

Figure S6: Benesi-Hildebrand plot for 1:1 complexation of 6APA-AgNPs (133.3 μ M) with Cr(VI). All values are expressed as mean \pm Standard Deviation. Error bar represents the standard deviation for three readings.

Figure S7: Benesi-Hildebrand plot for 1:2 complexation of 6APA-AgNPs (133.3 μ M) with Cr(VI).The association constant evaluated by equation 2 is (K= 862 M⁻²). All values are expressed as mean ± Standard Deviation. Error bar represents the standard deviation for three readings.

Figure S8: Modulation of surface plasmon resonance of functional conjugate of silver with 6-aminopenicillanic acid (142.8 μ M) at various pH.

Figure S9: Spectral response of 6APA-AgNPs-Chromium (VI) complex at various pH.

Fig. S10: Fourier Transform infrared spectrum of freeze dried 6APA-AgNPs-Cr (VI) complex separated from the mother liquor after centrifugation at 15000 rpm for 30 minutes.