Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting information to

Enhanced photocatalytic hydrogen production from Y₂O₃/TiO₂ nanocomposites: A comparative study on hydrothermal synthesis with and without ionic liquid

T. N. Ravishankar ^{ab}, M. de Oliveira Vaz ^b, S. Khan ^b, T. Ramakrishnappa*^{a c}, S. R. Teixeira^{*b}, Geetha. R. Balakrishna^a, G. Nagaraju ^d, J. Dupont ^{ef}

^a Centre for Nano and Material Sciences, Jain Global Campus, Jain University,

Jakkasandra (Post- 562112), Kanakapura (T), Bangalore, Karnataka, India.

^b Laboratory of Thin Films and Nanostructure Fabrication (L3F nano), Institute of

Physics, Universidade Federal do Rio Grande do Sul, UFRGS, Avenida Bento

Gonçalves 9500, P.O. Box 15051, 91501-970 Porto Alegre, RS, Brazil.

^c Dayananda Sagar Academy of Technology and Management, Udayapura, Opp Art of Living, Kanakapura road, Bangalore-560082

^d Department of Chemistry, SIT Tumkur, Karnataka (India)

^e Laboratory of Molecular Catalysis, UFRGS, Porto Alegre, RS, Brazil.

^f Department of Sustainable Chemistry, School of Chemistry, <u>University of Nottingham</u>, Nottingham, U.K.

*Corresponding authors Emails: <u>swadheshi26@gmail.com</u> (Dr.T. Ramakrishnappa, Fax: +91-80-27577199; Tel: +91-75-27506270) and <u>srgrbrtxr@gmail.com</u> (Dr. S.R. Teixeira, Fax: +55-3308-6498; Tel: +55-5133087286)

Fig.S1 UV-Vis spectra of (a) pristine $TiO_{2(ILAHM)}$ NPs, (b) 25 wt%, (c) 50 wt%, (d) 75 wt% Y₂O₃/TiO₂ NCs (ILAHM) and (e) pristine Y₂O₃ (ILAHM) NPs.

Fig. S2 Tauc Plot functions for the determination of band gaps of (a) pristine $TiO_{2(ILAHM)}$ NPs, (b) 25 wt%, (c) 50 wt%, (d) 75 wt% Y_2O_3/TiO_2 NCs _(ILAHM) and (e) pristine Y_2O_3 _(ILAHM) NPs.

Fig. S3 UV-Vis spectra of (a) pristine $TiO_{2(HM)}$ NPs, (b) 25 wt%, (c) 50 wt%, (d) 75 wt% Y_2O_3/TiO_2 NCs (HM) and (e) pristine Y_2O_3 (HM) NPs.

Fig. S4 Tauc Plot functions for the determination of band gaps of (a) pristine $TiO_{2(HM)}$ NPs, (b) 25 wt%, (c) 50 wt%, (d) 75 wt% Y_2O_3 / TiO_2 NCs _(HM) and (e) pristine Y_2O_3 _(HM) NPs.

Temperature (°C)	Crystalline size (nm)		BET surface area (m ² /g)	
	ILAHM	HM	ILAHM	HM
500	39.5 for (101)		46.7	37.3
600	37.5 for (101)		41.3	34.1.
700	26.5 for (101)		36.7	32.7
800			31.5	31.1

Table S1 Crystallite size and BET surface area of the 25 wt % Y_2O_3 / TiO₂ NC at different temperatures (500 – 800 °C for 1h), synthesized via ILAHM and HM.

Fig.S5 Hydrogen generation of 25 wt% Y_2O_3 / TiO₂ NC _(ILAHM), calcinated at different temperatures (500 – 800 °C for 1h).

Fig. S6 Hydrogen generation of 25 wt% Y_2O_3 / TiO₂ NC _(HM), calcinated at different temperatures (400 to 800 °C for 1 h).

Fig. S7 Hydrogen generation of 25 wt% $Y_2O_3/TiO_2 NC_{(ILAHM)}$, calcinated at 400 °C for 1, 2 and 3 hours.

 $\textbf{Step 1:} \ \mathrm{TiCl}_4 \ + \mathrm{Y} \ (\mathrm{NO}_3)_3 + \mathrm{H}_2\mathrm{O} + \mathrm{NaOH} \ \longrightarrow \{_3(\mathrm{HO})\mathrm{Ti}/\mathrm{Y} \ (\mathrm{HO})_2\} + \mathrm{NaNO}_3 + \mathrm{NaCl} \ (\mathrm{NO}_3)_3 + \mathrm{NaO}_3 + \mathrm{NaCl} \ (\mathrm{NO}_3)_3 + \mathrm{NaO}_3 + \mathrm{NaO$

Step 2: {₃(HO)Ti/Y (HO)₂} \longrightarrow Y₂O₃/TiO₂ Nano- composite

Scheme. S1(a). Proposed mechanism for the formation of Y_2O_3 / TiO₂ NC in the absence of IL.

Step 1:
$$TiCl_4 + Y(NO_3)_3 + MOEMI. CH_3SO_3^{-1} \xrightarrow{H_2O} \{MOEMI. CH_3SO_3 \cdot _3(HO) Ti - Y(HO)_2\} + NaNO_3 + NaCl NaOH$$

Step 2: $\{MOEMI. CH_3SO_3 \cdot _3(HO) Ti - Y(HO)_2\} \xrightarrow{\Delta} Y_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_2 Nano- composite + MOEMI. CH_3SO_3^{-1} + H_2O_3 / TiO_3 / TiO_$

Scheme S1 (b). Proposed mechanism for the formation of Y_2O_3 / TiO₂ NC in the presence of IL*

* MOEMI.CH₃SO₃⁻¹ = 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate

Scheme S2. Structure of 1-(2-methoxyethyl)-3-methylimidazolium methanesulfonate.

Fig. S8 EDS spectra of (a) pristine Y_2O_3 NPs (b) pristine TiO₂ NPs and (c) 25 wt% Y_2O_3 /TiO₂ NC_(ILAHM).

Fig. S9 FT-IR spectra of (a) pristine Y_2O_3 NPs (b) pristine TiO₂ NPs and (c) 25 wt% Y_2O_3/TiO_2 NC _(ILAHM), (inserted in Fig. (c) Showed the zoom-in view of the FT-IR spectra in the range of interest, e.g 400-1000 cm⁻¹ of Y_2O_3/TiO_2 NC _(ILAHM).