Table S1. List of commercially available automated microscopes

Company	Device name	Confocal	Link
Acquifer AG (Karlsruhe)	IM03	No	http://www.acquifer.de/high_content_screening/
GE Healthcare Europe GmbH (Freiburg)	IN CELL 2200/6000	No/ Yes	http://www.gelifesciences.com/webapp/wcs/stores/servlet/catalog /en/GELifeSciences- de/products/AlternativeProductStructure_12997/ 29043323
Leica Microsystems GmbH (Wetzlar)	HCS-A module for Leica microscopes	Yes	http://www.leica-microsystems.com/de/produkte/lichtmikroskope /biowissenschaften/fluoreszenzmikroskope/details/product/leica- las-x-widefield-systems/
Molecular Devices, LLC (CA, USA)	Image Express Micro/Ultra	No/Yes	http://www.moleculardevices.com/systems/high-content- imaging/imagexpress-ultra-confocal-high-content-analysis-system
Nikon GmbH (Düsseldorf)	Ti HCS	Yes	http://nikon.com/products/instruments/lineup/bioscience/biologica I-microscopes/inverted/ti_eus/index.htm
Olympus Deutschland GmbH (Hamburg)	ScanR	No	http://www.olympus-europa.com/microscopy/en/microscopy/ components/component_details/component_detail_21320.jsp
PerkinElmer Inc. (MA, USA)	Operetta/Opera	No/yes	http://www.perkinelmer.com/pages/020/cellularimaging/products/ operetta.xhtml
Thermo Fisher Scientific Inc. (MA, USA)	CellInsight/ Arrayscan XTI Infinity	No/Yes	https://www.lifetechnologies.com/order/catalog/product/ASN0000 4F
Visitron Systems GmbH (Puchheim)	CellVoyager CV100 (preliminary)	Yes	http://www.visitron.de/Products/Confocal/Cell_Voyager_CV1000/c ell_voyager_cv1000.html
Wako Automation (CA, USA)	Yokogawa CV7000s/CQ1	Yes	https://www.lifetechnologies.com/order/catalog/product/ASN0000 4F

Table S2. Bioinformatical approaches for compound profiling

Approach	Description	References
		See main
		text
Principal component	PCA aims at reducing data complexity (dimension reduction by linear	41, 49, 51
analysis (PCA)	combination of descriptors/features) of multivariate data sets and improving	
	interpretation and visualization. For this only principal components are	
	considered that cover most of the variability within the dataset.	
Kohonen neural	A Kohonen network is a self-organizing map (SOM) that produces a low	49
networking	dimensional representation for comparison of multiparametric phenotypic	
	responses. First, multivariate measurements of a training set (compounds with	
	known MOA) are analyzed for constructing a map. In the second step,	
	measurements from unknown compounds are mapped to the predefined	
	classes.	
Distance/	For each feature the average is calculated. Feature responses derived from	41, 47, 51
similarity of mean	untreated or with known compounds treated cells are scaled to cover a	
profiles	common range. Compound profiles are then generated consisting of all features	
	represented by their mean values. Using a distance measure the similarity of the	
	profiles can be calculated and further analyzed by e.g. rank based approaches or	
	cluster analysis.	
Kolmogorov-Smirnov	The KS-algorithm is a nonparametric hypothesis test for comparing population	9, 47
(KS)-statistic	responses. It is based on the maximum difference that is calculated between	
	two cumulative distribution functions (CDF) of each feature. Profiles of scored	
	KS-statistics can be used for profiling mode of actions.	
Normal vector to	The SVM algorithm is a supervised data mining method that can be used, for	44, 47
support-vector	pattern recognition. For constructing a SVM, objects for training are needed. In	
machine (SVM)	case of image analysis the SVM has to be trained to discriminate compound-	
hyperplanes	treated from control cells. The SVM is then able to generate a hyperplane that	
	divides both conditions in the feature space. The normal vector of the	
	hyperplane is included from every feature for generating a profile.	
Gaussian mixture	In GMM it is assumed that compound treatment induces a limited number of	45, 47
modeling (GMM)	cellular phenotypes. Features are represented here as a mixture of Gaussian	
	distributions. Subsamples of the data set are used to generate GMM profiles for	
	untreated cells/ known compounds. Unknown samples can be assigned to a	
	MOA class by the probability of their features to belong to one of the GMM	
	profiles.	
Factor analysis	The application of factor analysis for phenotypic profiling is based on the	47, 48
	assumption that a certain biological response (induced by compound treatment)	
	is represented by several features of which subsets can exhibit high correlation	
	Correlated features are grouped and represent a common underlying factor.	
	The factors allow for the interpretation of the biological effect of a compound.	