Electronic Supplementary Information

New insights on the organic-inorganic hybrid perovskite

CH₃NH₃PbI₃ nanoparticles. Experimental and theoretical study of

doping in Pb²⁺ sites with Sn²⁺, Sr²⁺, Cd²⁺ and Ca²⁺

Javier Navas,* Antonio Sánchez-Coronilla,^{[1],*} Juan Jesús Gallardo, Norge Cruz

Hernández,^[2] Jose Carlos Piñero,^[3] Rodrigo Alcántara, Concha Fernández-Lorenzo,

Desiré M. De los Santos, Teresa Aguilar, Joaquín Martín-Calleja

Departamento de Química Física, Facultad de Ciencias, Universidad de Cádiz, E-11510 Puerto Real (Cádiz), Spain; ^[1] Departamento de Química Física, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; ^[2]Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería Informática, av. Reina Mercedes, Universidad de Sevilla, 41012 Sevilla, Spain, and ^[3]Departamento de Ciencias de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, E-11510 Puerto Real (Cádiz), Spain.

Corresponding Authors:

* Javier Navas (javier.navas@uca.es); Antonio Sánchez-Coronilla (antsancor@us.es).

Sample* MAPb _{1-x} B _x I ₃		wt.% C	wt.% H	wt.% N	wt.% Pb	wt.% I	wt.% B	Xreal
MAPbI ₃		1.95	0.97	2.27	33.56	61.25		0.00
B=Sn	0.05	1.95	0.98	2.28	31.87	61.86	1.06	0.05
	0.10	1.96	0.98	2.29	30.76	62.25	1.76	0.09
	0.15	1.98	0.99	2.31	29.00	62.80	2.92	0.15
B=Sr	0.05	1.96	0.98	2.28	31.93	62.08	0.77	0.05
	0.10	1.98	0.99	2.31	30.55	62.68	1.49	0.10
	0.15	1.99	0.99	2.32	29.54	63.08	2.08	0.14
B=Cd	0.05	1.95	0.98	2.28	32.03	61.79	0.98	0.05
	0.10	1.97	0.98	2.30	30.55	62.44	1.76	0.10
	0.15	1.98	0.99	2.31	29.02	62.90	2.80	0.15
B=Ca	0.05	1.97	0.98	2.29	31.97	62.38	0.41	0.06
	0.10	1.99	0.99	2.32	30.90	63.17	0.63	0.10
	0.15	2.02	1.01	2.36	29.51	64.09	1.01	0.15

Table S1. Results in weight percentage (wt.%) obtained from the elemental analysisperformed using the CHNS and XRF techniques.

*The doped samples are named according to the dopant and the nominal value of x. The real value of x is shown in the last column of the table.

Figure S1. XRD patterns of: (A) MAPbI₃ synthesized; (B) MAPb_{1-x}Sn_xI₃; (C) MAPb_{1-x}Sr_xI₃; (D) MAPb_{1-x}Cd_xI₃; (E) MAPb_{1-x}Ca_xI₃. Te: Tetragonal phase (I4/mcm space group); Cu: Cubic phase (Pm3m space group). x=0.05, 0.10, 015.

Figure S2. XRD patterns of commercials (A) PbI₂; and (B) CdI₂ used as reagents.

Figure S3. XRD patterns of MAPb_{0.5}Sn_{0.5}I₃. Te: Tetragonal phase (I4/mcm space group).

Figure S4. UV-Vis spectra, in mode reflectance diffuse, of: (A) MAPbI₃; (B) MAPb₁₋ _xSn_xI₃; (C) MAPb_{1-x}Sr_xI₃; (D) MAPb_{1-x}Cd_xI₃; (E) MAPb_{1-x}Ca_xI₃. x=0.05, 0.10, 015.

Figure S5. UV-Vis spectra, in mode reflectance diffuse, of MAPbI₃ and MAPb_{0.5}Sn_{0.5}I₃ samples.

Figure S6. XPS spectra for MAPbI₃; and MAPb_{1-x}B_xI₃ (B: Sn, Sr, Cd, Ca) with x=0.10.

Figure S7. UV-Vis spectra, in mode reflectance diffuse, of commercial PbI₂ used as a reagent.

Figure S9. Starting configurations of the MA groups in the structure.

