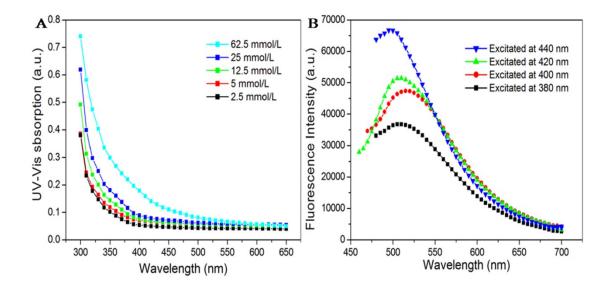
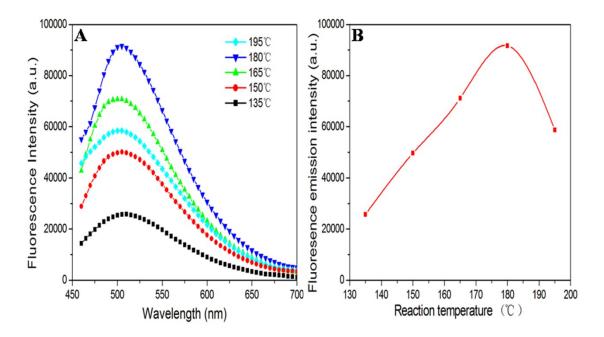
Electronic Supplementary Information


Amino-functionalized Green Fluorescent Carbon Dots as

Surface Energy Transfer Biosensors for Hyaluronidase


Siyu Liu^a, Ning Zhao^a, Zhen Cheng*^b and Hongguang Liu*^a

- ^a Institute of Molecular Medicine, College of life and health sciences, Northeastern University, Shenyang 110000, China
- ^b Molecular Imaging Program at Stanford, Stanford University, Palo Alto, CA 94301, USA

*Correspondence author: email: <u>simonliu@mail.neu.edu.cn</u> or <u>zcheng@stanford.edu</u>

Fig. S1 (A) UV-Vis absorption spectra of CDs synthesized by different concentration of sodium pyrophosphate increasing from 2.5 to 62.5 mmol/L (2.5, 5, 12.5, 25, 62.5 mmol/L). (B) The fluorescence emission spectra of CDs with different fluorescence excitation wavelengths.

Fig. S2 (A) Fluorescence emission spectra and (B) fluorescence emission intensity at maximum of CDs synthesized at various temperature. (Sodium pyrophosphate concentration was 62.5 mmol/L)

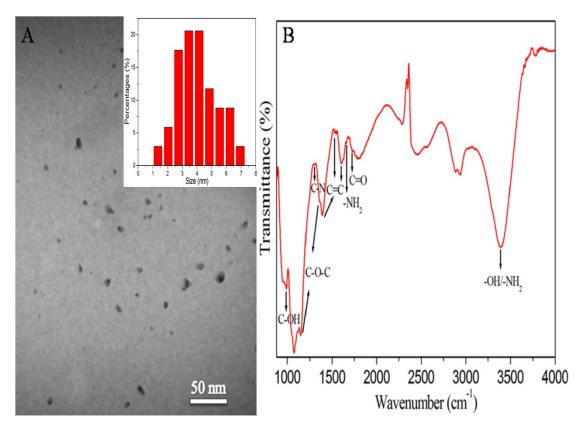


Fig.S3 (A) The TEM image and (B) FT-IR spectra of as-prepared CDs

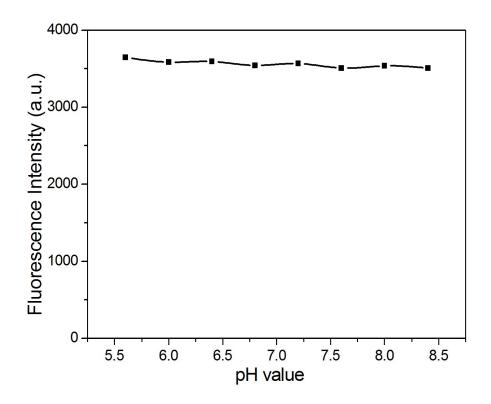
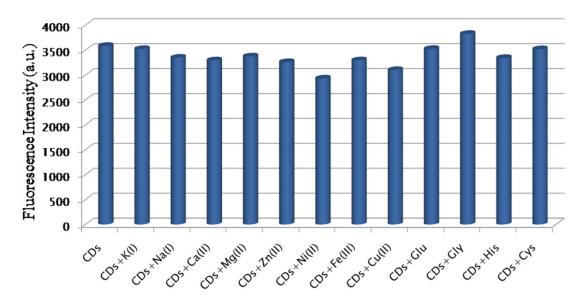



Fig. S4 The fluorescence intensity of the synthesized CDs solution measured in different pH environments.

Fig.S5 The fluorescence intensity of CDs solution and CDs solution with individual metal ions and molecules. (5 mmol/L K⁺, Na⁺, Ca²⁺, Mg²⁺, Glu, Gly, His and Cys, 2.5 mmol/L Zn²⁺ and Ni²⁺, and 0.2 mmol/L Fe³⁺ and Cu²⁺)

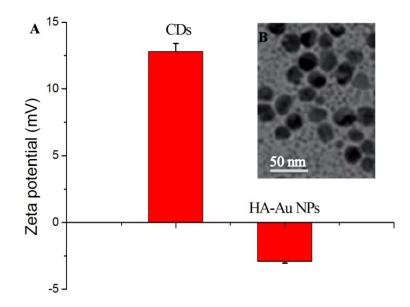
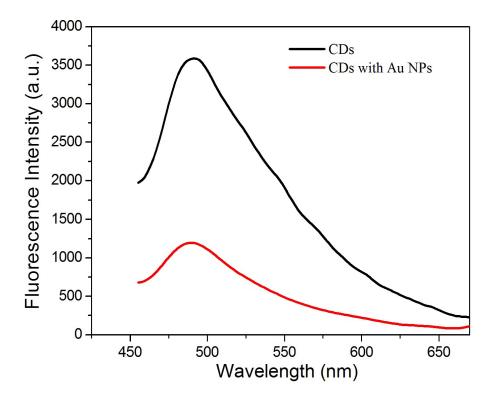
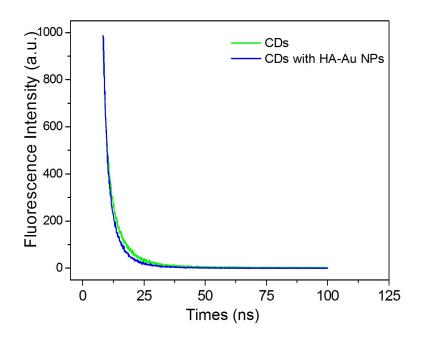




Fig.S6 (A) Zeta potentials measurements of amino-functionalized CDs and HA-AuNPs in pH 6.0

solution. (B) TEM image of amino-functionalized CDs and HA-Au NPs mixture solution.

Fig.S7 The fluorescence emission spectra of prepared CDs solution with and without HA-Au NPs. (10 mmol/L NaH₂PO₄-Na₂HPO₄ buffer solution, pH 6.0)

Fig.S8. The fluorescence life time determination of amino-functionalized CDs (Green line) and the SET system composed of amino-functionalized CDs and HA-Au NPs (Blue line).

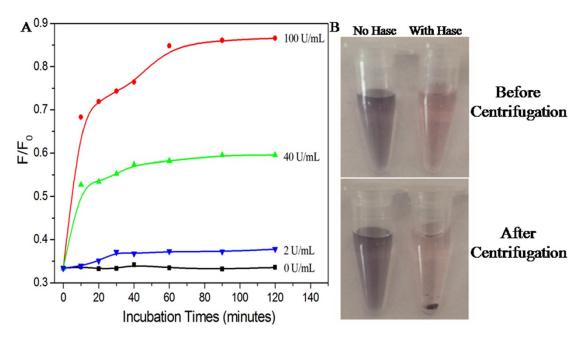
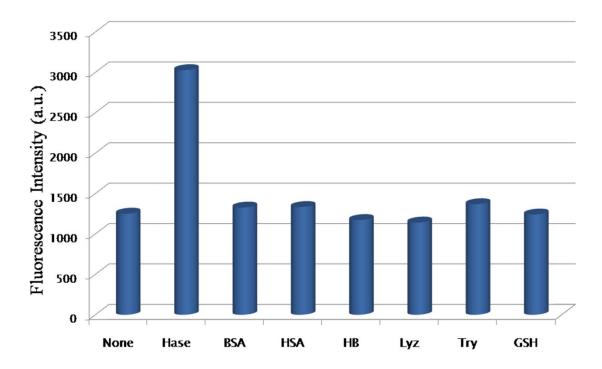



Fig.S9 (A) The fluorescence intensity ratios changes of CDs/HA-Au NPs system as a function of

the Hase enzyme digestion time. The Hase concentration is respectively 0, 2, 40, 100 U/mL.

Reaction condition: 10 mmol/ L NaH₂PO₄-Na₂HPO₄ buffer solution (pH 6.0) at 37°C. F_0 is the original fluorescence intensity of CDs, and F is the fluorescence intensity of CDs/HA-Au NPs system with the addition of various concentration of Hase. (B) The picture shows the color change of the CDs/HA-Au NPs solutions incubated with 100 U/mL Hase before or after centrifugation.

Fig.S10 The fluorescence intensity of the CDs/HA-Au NPs assay system and respectively incubated with 0.25 mg/mL (100 U/mL) Hase, BSA, HSA, HB, Lyz, Try or GSH for 2 hours. Reaction condition: 10 mmol/ L NaH₂PO₄-Na₂HPO₄ buffer solution (pH 6.0) at 37° C.

Serum samples	Added Hase	Detected Hase	Recovery	RSD
	(U/mL)	(U/mL)	(%)	(n=3, %)
1	0.50	0.54	108	4.7
2	5.0	5.1	102	3.2

Table S1 Determination of Hase in fetal bovine serum samples according to equation (1)