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The model

When a dry polymer is placed in contact with a thermodynamically good solvent, the solvent enters 

the polymer and may induce major structural changes in its morphology. The polymer responds to 

the stimulus provided by the permeation of the solvent, with a mechanical action, this is, a volume 

change. Mathematical models of swellable polymers involve at least two aspects, the diffusion of 

the penetrant in the polymer and the volume changes due to penetrant adsorption. As far as the 

transport is concerned, diffusion in polymers is not always best described by Fick’s law. In 1966 

Alfrey, Gurnee, and Lloyd distinguished three types of diffusion according to the relative rates of 

diffusion and polymer relaxation [1]. They were (i) Case I or Fickian diffusion, (ii) Case II or 

diffusion and (iii) Case III or non-Fickian or anomalous diffusion1.  

To distinguish between these regimes the Deborah number, De, is introduced

De= λ
θ

  (1)

where λ is the characteristic stress-relaxation time of the polymer-penetrant system and θ is the time 

for diffusion of the solvent in the polymer2. Depending on the magnitude of De, the process may be 

Fickian or Non-Fickian. For De >> 1 the Fickian regime dominates as the solvent diffuses through 

the unswollen polymer. For De << 1 Case II transport occurs, the solvent penetrates mainly through 

the swollen polymer. If the rates of the solvent diffusion and polymer relaxation are comparable, De 

~ 1, the transport mechanism is often called anomalous or Non-Fickian. From a microscopic point 

of view, diffusion is influenced by the polymer uncoiling which occurs at about the same rate of the 

penetrant transport. The relaxation of the macromolecules is strongly coupled to the diffusion of the 

solvent. Among the anomalous behaviors observed, oscillation-with-decay and overshoot sorption 

have been reported. 3, 4. 

In order to model closely experimental and practical situations we chose a numerical approach. The 

backbone of the model is based on Peppas et al.’s work5. The model explicity describes swelling. It 
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is able to portray a range of diffusional behaviours, from Fickian to Case II. Non-ideal 

concentration effects on the diffusion coefficient can be included. The model is solved numerically 

using finite element methodology6.

At the basis of the model is Fick's law

 2 







δξ
δCD

δξ
δ=

δτ
δC

where

C=
C w

Cw,e
  (3)

with Cw,e the equilibrium concentration of the solvent, C becomes a normalized concentration. The 

spatial coordinate is normalized with respect to the polymer dry thickness (4) and the penetrant 

diffusion coefficient normalizes the time scale (5)

ξ= x
L0

  (4) τ= Dt
L0

2   (5)

Boundary and initial conditions of the system are expressed by equations (6) and (7). The 

concentration at the two interfaces is set at 1 to mimic a polymer film placed in an infinite bath of 

penetrant. Initially, the concentration of the solvent inside the polymer is set to zero.
C (0, τ)=C (ξ,τ )= 1  (6)

C (ξ ,0)= 0  (7)

Diffusion coefficients in polymer systems are often concentration dependent. The normalized 

diffusivity is taken as an exponential function of the concentration according to the free-volume 

theory7. The diffusion coefficient is described by a Fujita-type exponential

D=e− β (1− C)  (8)

where β is a parameter defining concentration dependence of D. Fig. 1 illustrates the relationship 

between the diffusion coefficient D and the normalized concentration C with varying β.  An 

increase of β decreases the diffusion coefficient.

The polymer response to the diffusant is explicity modeled. The space has been divided into 20 

layers each of width 0.05 (in dimensionless units). The layers are further subdivided by multiple 

meshes. Each layer is allowed to expand according to the amount of diffusant it contains. A high 

solvent concentration results in more swelling. The material response is controlled by 

Δξ 1,i=
Δξ 0

(1− veC i)
  (9)
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Initially the polymer slab is glassy in nature, which prevents isotropic diffusion. The diffusion of 

the solvent molecules is restricted to one-dimension with the elongation of the polymer layer 

governed by (9). As a solvent concentration sufficient to plasticize the polymer is reached, the 

mechanism of transport changes. The movement of the solvent molecules is less hindered by the 

material.  The process of diffusion becomes three-dimensional and the polymer swells following eq. 

(10). Both the one and three-dimensional processes are governed by the material constant υe, but the 

one-dimensional process elongates the system to a greater extent than the isotropic process.

In Peppas’ model the polymer relaxation process is not directly portrayed. Relaxation is assumed to 

be faster than the sorption process and virtually instantaneous. It can be thought as a vertical drop in 

volume, as the system moves from the 1D to the 3D regime. Experimentally the structural changes 

in the polymer are slow and the relaxation time is not zero.  A better description of the relaxation is 

provided by Ishida et al8. A time-dependent formulation of the polymer relaxation is given as

Δξ R=cτ B   (11)

where c and B are parameters linked to the polymer relaxation time.

Results

Initially, we consider a simple Fickian diffusion. The D coefficient is assumed independent of the 

concentration, β equal 0. The swelling is considered negligible and ν is set to 0. The concentration 

profile in Fig. 2 shows a progressive smooth penetration of the solvent into the material from the 

external interfaces. The profile is half of a Gaussian function whose width increases with time. The 

response is symmetric with respect to L0/2.  Similar results can be obtained analytically9.

Then, we take into account a diffusion coefficient that depends on the concentration of the 

penetrant. The concentration profile in Fig. 3 shows sharp advancing concentration fronts that meet 

at the centre of the sample. The solvent uptake is slow in the unsolvated polymer domain, while it 

becomes faster in the region where the polymer has already been solvated. The solvation of the 

macromolecules favors chain rearrangement, which leads to an increment of the free volume. The 

solvent diffusion path is less hindered. This is a Case II diffusion. 

In the third system, we introduce the swelling factor (Fig. 4). The swelling process is assumed 

monodimensional and the material constant ν is set to 0.5. The parameter β is set to 2. Both swelling 

and diffusion coefficient depend on the concentration. As expected the concentration profile is 

modified and the system expands to the right and to the left.



4

In order to accommodate the solvent molecules the polymer chains rearrange. With respect to the 

diffusion of the solvent, part of the movement may be almost instantaneous and part relatively 

slow10. The instantaneous change consists of the movement of individual functional groups and/or 

small segments of chains. The instantaneous volume change takes place in the first part of Fig. 5. 

The diffusion coefficient is concentration-dependent (β=1).  Since the swelling process appears to 

be coupled with solvent penetration we set ν to 0.76.

The slow response is triggered by internal stresses experienced by the polymer due to the presence 

of the diffusant. It involves the uncoiling/rearrangement of large segments of the polymer chains. 

The slow volume change appears in the second part of the Fig. 5. A similar behavior occurs to 

polymers under other circumstances, for instance polymers subject to a sudden increase in 

temperature11. When the temperature is suddenly increased the polymer undergoes an instantaneous 

expansion, followed by a slow shrinking. The description of the relaxation process is considered as 

proposed by Ishida. The experimental results are fitted as c=1.12, B=0.21.

As soon as the stresses are removed further uptake is possible. The polymer is solvated and the 

diffusion coefficient is no longer concentration dependent (β=0). The value of ν is kept at 0.76. The 

process is slow and the volume changes. This feature is depicted in the third part of Fig. 5.

We assumed PLGA degradation to be negligible in the early stages of the process. The time scales 

of diffusion and degradation process are not the same. The polymer film has to be solvated before it 

can undergo hydrolysis. It has been reported that PLGA follows a first order degradation process, 

which starts after the first week12. 

In summary, a model to gain understanding of the coupled diffusion-swelling process in PLGA is 

proposed. It describes the three regimes that have been experimentally observed (Fig. 5) 1D 

diffusion dominates in the first region.  The initial swelling is followed by the polymer relaxation. 

As the stresses are dissipated by the viscous flow of the polymer, a second swelling is observed. 
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Fig. 1. Diffusion coefficient-concentration relationships. The dependence of the diffusion 

coefficient on the concentration is controlled by equation (8) through β.

Fig. 2. Time evolution of concentration profile with constant diffusion coefficient (β=0) and no 

swelling (ν=0). Lines refer to dimensionless time increments Δτ=0.02.
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Fig. 3. Time evolution of concentration profile with concentration-dependent diffusion coefficient 

(β=5) and no swelling (ν=0). Lines refer to dimensionless time increments Δτ=0.02.

Fig. 4. Time evolution of concentration profile for nonconstant volume and nonconstant penetrant 

diffusion coefficient (β=2).  The process is assumed monodimensional and the material constant ν is 

set to 0.5. Lines refer to dimensionless time increments Δτ=0.02.
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Fig. 5. Normalized width expansion of the PLGA as a function of time. Experimental results are in 

agreement with the solution of the model, which is plotted as a dashed line.  
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