Electronic Supporting Information (ESI)

High Pressure Pyrolyzed Non-precious Oxygen Reduction Catalysts for Alkaline

Polymer Electrolyte Membrane Fuel Cells

Jakkid Sanetuntikul and Sangaraju Shanmugam*

Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST),

Dalseong-gun, Daegu 711-873, Korea.

E-mail: sangarajus@dgist.ac.kr

Characterization:

The N₂ adsorption–desorption measurements were carried out using 'Micromeritics' (ASAP 2020) at 77 K. Bruner–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH) models and the t-plot method (Harkins and Jura formula) were used to determine the specific surface area, the microporous (0.5-2 nm) and mesoporous (2-50 nm) pore size distributions and microporous information for the cobalt embedded carbon nanorods samples, respectively. Before the measurements, the samples were degassed at 200 °C under vacuum for 4 hours. The amount of nitrogen and carbon in samples were accurately determined by elemental analyzer (C, H, N analysis).

The kinetics of ORR on M-N-C catalyst evaluated by Koutecky-Levich plots were determined by follow equation.

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{\frac{1}{B\omega^2}} + \frac{1}{J_K}$$
$$B = 0.62 \text{ n F } C_0 D_0^{\frac{2}{3}} \text{ v}^{-\frac{1}{6}}$$

Where, J is the experimentally measured current, J_L is the diffusion-limiting current, J_K is the kinetic current, ω is the angular velocity, F is the Faraday constant, C₀ is the saturated concentration of O₂ in 0.1M KOH (1.2 x 10⁻⁶ mol cm⁻³), D₀ is the diffusion coefficient of O_{2 in} 0.1M KOH (1.9 x 10⁻⁵ cm² s⁻¹), and v is the kinematic viscosity of the electrolyte. "n" can calculate from slop by under plot of J⁻¹ vs ω ^{-1/2} and J_k is calculated from inverse of intercept.

The formation of HO₂-and the electron transfer number from RRDE experiment were determined by follow equation;

$$H_2O_2(\%) = 200 \text{ x} \frac{I_R/N}{I_D + (I_R/N)}$$

 $n = 4 \text{ x} \frac{I_D}{I_D + (I_R/N)}$

where, I_D is the disk current, I_R is the ring current, and N is the ring correction coefficient in RRDE experiment was determine to be 0.37 from the reduction of $Fe(CN)_6^{4-/3-}$ redox couple. The ring potential was held at 1.3 vs. RHE.

Figure S1. Thermograms of Fe-N-C and Co-N-C precursors carried out in an air atmosphere with a heating rate of 10°C min⁻¹

Figure S2. TEM images of (a, a') Fe-N-C (b, b') Co-N-C catalyst

Figure S3. XRD patterns of as-synthesized products after first heat-treated (before acid treatment)

Figure S4. BET surface area analysis of (a) Fe-N-C (b) Co-N-C catalysts; insets show BJH pore-size distribution.

Figure S5. XPS survey spectra of Fe-N-C and Co-N-C catalyst.

Figure S6. RDE trances of Fe-N-C (0.6 mg cm⁻²) and Pt/C (30μ g cm⁻²) catalysts obtained at 1,600 rpm in O₂-saturated 0.5M H₂SO₄ (cathodic scan direction) in 0.5M H₂SO₄ electrolyte, All potential were converted to RHE scale by adding 0.26V.

Figure S7. RRDE response of Fe-N-C, Co-N-C and Pt/C catalysts obtained at 1600 rpm in O₂-saturated 0.1 M KOH. (catalyst loading- 0.4 mg cm⁻²; Pt/C -30 μ g cm⁻²)

 Table S1. The XPS data of Fe-N-C and Co-N-C catalysts.

Catalyst	N1s Distribution (%)			Total N content	Fe2p _{3/2} Distribution (%)		Total Fe content	Co2p _{3/2} distribution (%)		Total Co Conten	N/C ratio
	N1	N2	N3	(%)	Fe(II)	Fe(III)	(%)	Со- О	Co-N _x	(%)	()
Fe-N-C	1.1	1.82	0.16	3.08	0.4	0.28	0.68	-	-	-	0.033
Co-N-C	0.32	0.81	0.18	1.31	-	-	-	0.67	0.06	0.73	0.014

Table S2. The CHN elemental analysis of Fe-N-C and Co-N-C catalysts.

Catalyst	C(wt%)	H(wt%)	N(wt%)	N/C ratio
Fe-N-C	92.29	0.85	1.05	0.011
Co-N-C	89.37	1.04	0.68	0.007

Table S3. The alkaline membrane fuel cells performance data electrocatalyst with commercial membrane in H_2 - O_2 system, no added back pressurization, reported in the literature

Cathode material	Operating Temperature (°C)	Maximum power density (mW cm ⁻²)	Reference	
Fe-N-C	60	75	*	
Co-N-C	60	68	•	
NpGr-72	50	27	1	
N-CNT	50	37.3	2	
MnO _x -GC	70	98	3	
Ag/C	25	10	4	
CoPc/MWCNT	50	120	5	
FePc/MWCNT	50	60	5	
Au/C	Au/C 50 36		6	
Ag/C	50	19	U	

* Present study

References

1. T. Palaniselvam, M. O. Valappil, R. Illathvalappil, and S. Kurungot, *Energy Environ. Sci.*, 2014, 7, 1059.

- 2. C. V. Rao and Y. Ishikawa, J. Phys. Chem. C, 2012, 116, 4340-4346.
- 3. J. W. D. Ng, Y. Gorlin, D. Nordlund, and T. F. Jaramillo, *J. Electrochem. Soc.*, 2014, **161**, D3105–D3112.
- 4. S. Maheswari, P. Sridhar, and S. Pitchumani, *Electrocatalysis*, 2011, **3**, 13–21.
- 5. I. Kruusenberg, L. Matisen, Q. Shah, A. M. Kannan, and K. Tammeveski, *Int. J. Hydrogen Energy*, 2012, **37**, 4406–4412.
- 6. S. D. Poynton, J. P. Kizewski, R. C. T. Slade, and J. R. Varcoe, *Solid State Ionics*, 2010, **181**, 219–222.