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In main text Equation (3),
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S4. Bond lengths and angles of uniaxially-stressed phosphorene

Bond lengths and angles of deformed phosphorene under uniaxial
stress 6 = 0.8GPa'nm along different directions are summarized in
Table S1. Bonds and angles are labeled according to participating
atoms. For example, 73 is the bond lengths between atoms A and B,

while bond angle ZABC is the angle between bonds AB and BC.
Bond lengths 7ap, rsc, 7cp, bond angles ZABC, 2BCD, 2CDE and
the angle between the two primitive vectors ¢, are shown in Figure 1
(a-c). In unstressed phosphorene, rag = rpc, and £BCD = 2CDE.
After symmetry is broken by the application of uniaxial stress, these
bonds and angles are no longer equal. Under the constant stress
conditions with the angle & changing from 0° to 90°, several
geometric parameters show nonmonotonic behavior. For instance,
£BCD decreases first and then increases, and so does angle «. The
bond length rsp and angle 2CDE have the opposite trend — they
increase first and then decrease.

Table S1. Bond lengths and bond angles in the unstressed phosphorene and phosphorene under constant uniaxial stress 6=0.8GPa-nm. The
numbers in parentheses give fractional changes of the values in each column at = 0° and &= 90° with respect to the unstressed case.

6() oA @) a) B B Tep(A) LABC(P)  £BCD(°)  £CDE(°)
Unstressed 3.300 4.623 90.00 2222 2222 2.259 95.93 104.14 104.14
0 3.329 4.595 90.00 2.229 2.229 2.257 96.58 103.89 103.89
0.9%)  (-0.6%) 03%)  (03%) (-0.1%)  (0.7%) (-0.2%) (-0.2%)

10 3.328 4.600 89.72 2.229 2.228 2.258 96.59 103.77 104.17
20 3.327 4.612 89.50 2.229 2.227 2.257 96.57 103.68 104.41
30 3.326 4.628 89.32 2.231 2.227 2.258 96.53 103.66 104.60
40 3.327 4.648 89.11 2.232 2.226 2.258 96.53 103.63 104.87
50 3.324 4.673 88.86 2.232 2.225 2.261 96.45 103.72 105.31
60 3.315 4.706 88.68 2.230 2.223 2.262 96.23 103.87 105.72
70 3.300 4.742 88.77 2.226 2.219 2.264 95.88 104.24 105.98
80 3.286 4.772 89.25 2.221 2.217 2.266 95.55 104.84 105.92
90 3.280 4.784 90.00 2.217 2.217 2.266 95.44 105.51 105.51
(-0.6%)  (3.5%) (-02%) (-02%) (0.3%)  (-0.5%) (1.3%) (1.3%)




S5. Band gap
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Band gap and strain has linear relationship as
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Here, &, &,, and &, are components of the strain tensor
in non-rotated system, aligned with the lattice vectors of
the 2D crystal.
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system rotated counterclockwise by an angle §w.r.t. non-
rotated one, the corresponding stress tensor ¢ in non-
rotated system is given by:
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In non-rotated system, the relationship between stress
and strain is
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Substituting Equation (S2) into Equation (S1), we can get
the band gap of phosphorene under uniaxial stress o
applied along arbitrary direction 6

= EQ(B,O) + 0'( hlcosze + h,cosfsinf + h3sin29)

Three parameters /4, /,, h; can be got by fitting results
from DFT calculation.

Figure S1. Computed band gap values based on HSE06
method and fitting line for monolayer phosphorene
uniaxially stressed in-plane along different directions, at
0=0.8 GPa-nm. The base value of 1.60 eV represents the
gap for unstrained material.

S6. Effective mass
h2k?

Based on the quadratic 2m dispersion relationship,
the energy surface near the CBM and VBM can be

described as elliptic parabolic surface equation:
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and its second derivative is 0k

The effective mass is related with the second derivative
of energy:
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Figure S2. Effective masses based on HSE06 method of
(a) electrons and (b) holes in phosphorene under uniaxial
stress 0.8 GPa-nm along different directions. For
electrons, the effective mass remains nearly unchanged
with stress (purple line). For holes, effective mass is
sensitive to stress and its direction #, as shown for
unstressed phosphorene (red), and phosphorene with
stress of applied along &= 0° (green), and &= 90° (blue).

S7. Young’s modulus for bulk

Bulk phosphorus is orthotropic materials, its stiffness
tensor can be written as:
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Young’s modulus along zigzag direction
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