Supporting Information

Exciton Dynamics and Annihilation in WS₂ 2D Semiconductors

Long Yuan and Libai Huang^{*}

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States

Fig.S1. PL spectrum at different location for monolayer WS₂.

Fig. S2. *PL* decay at two different low excitation densities to obtain the exciton lifetime without annihilation for WS_2 (a) monolayer, (b) bilayer, and (c) trilayer.

Fig. S3. *PL* decay with 650 nm short-pass filter (black line) and 700 nm long-pass filter (red line) in WS_2 bilayer at pump intensity of 0.2 uJ/cm^2 .

Fig. S4. *PL* decay for WS_2 monolayer at different locations at pump intensity of 5 nJ/cm².

Fig. S5. Integrated PL intensity for monolayer WS_2 as a function of pump intensity.

Fig S6. Evolution of PL spectra in WS_2 monolayer with the pumping intensity. We observed an obvious biexciton emission peak only at pump intensity great than $8.0*10^{11}$ cm⁻² (b).

Fig. S7. (a)Normalize the decay curves at the low pump intensity (without annihilation) and high exciton density $(1.6 \times 10^9 \text{ cm}^{-2})$ at the long delay time of 2 ns. (b) The subtracted decay curve at the low pump intensity from the high pump intensity and fit the subtracted curve with a single exponential decay. The obtained annihilation time is ~ 400 ps.

Quantum yield measurements

We measured the quantum yield of WS_2 monolayer, bilayer, and trilayer following the method referring in previous study¹. We used a calibrated reference consisting of a thin film of rhodamine-6G dye molecules. The films were prepared by spin coating a glass substrate with a concentrated methanol solution of rhodamine-6G. We firstly calibrated the absolute QY of our reference film using the methanol solution of rhodamine-6G, which has a quantum yield of 100%. With this reference, we then determined the QY of WS₂ films.

Reference

1. Mak, K. F. L., C.; Hone, J.; Shan, J.; Heinz, T. F., Phys. Rev. Lett. 2010, 105, 136805.