Supporting Materials

Efficient inorganic solid solar cell composed of perovskite and PbS quantum dots

Yi Li,^{1,2} Jun Zhu,¹* Yang Huang,¹ Junfeng Wei,¹ Feng Liu,¹ Zhipeng Shao,¹ Linhua Hu,¹ Shuanghong Chen,¹ Shangfeng Yang,² Junwang Tang,³* Jianxi Yao,⁴ and Songyuan Dai¹⁴*

¹Key Laboratory of Novel Thin Film Solar Cells, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China

²Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China

³Department of Chemical Engineering, University College London, London WC1E 7JE, UK

⁴Beijing Key Laboratory of Novel Thin Film Solar Cells, State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, P. R. China

Figure S1 | UV-visible absorption spectrum of TiO₂/CH₃NH₃PbI₃ films before and after spinning PbS QDs. 10 mg/mL PbS QDs in octane solution was used and the spinning speed is 3000 rpm for 30 s.

Figure S2 | Photovoltaic performance of $TiO_2/CH_3NH_3PbI_3/PbS$ solar cell as a function of spin-coating number for PbS QDs. $CH_3NH_3PbI_3$ was prepared on the TiO_2 films by the one-step method. The PbS QDs in octane (10 mg/mL) was spread on the $FTO/TiO_2/CH_3NH_3PbI_3$ substrates, which was spun for 30 s at speed of 3000 rpm in ambient atmosphere.

Table S1 | Photovoltaic parameters of perovskite solar cells depending on the number of spin-coating for PbS QDs. CH₃NH₃PbI₃ was prepared on the TiO₂ films by the one-step method.

Spin-coating times	$V_{\rm oc}$ (V)	$J_{\rm sc}~({\rm mA/cm^2})$	FF	PCE (%)
none	0.60	12.49	0.466	3.50
1 time	0.62	14.27	0.53	4.67
2 times	0.64	14.17	0.52	4.73
3 times	0.62	13.39	0.44	3.63

Figure S3 | Photovoltaic performance of TiO₂/CH₃NH₃PbI₃/PbS solar cell as a function of spin-coating number for PbS QDs. CH₃NH₃PbI₃ was prepared on the TiO₂ films by the two-step method. The PbS QDs in octane (10 mg/mL) was spread on the FTO/TiO₂/ CH₃NH₃PbI₃

substrates, which was spun for 30 s at speed of 3000 rpm in ambient atmosphere.

			•		
Spin-coating times	$V_{\rm oc}({\rm mV})$	$J_{\rm sc}~({\rm mA/cm^2})$	FF	PCE (%)	
none	761	16.78	0.431	5.52	_
1 time	868	18.69	0.486	7.88	
2 times	875	18.14	0.453	7.15	
3 times	860	16.87	0.405	5.86	
4 times	884	15.32	0.382	5.17	

Figure S4 | Effect of PbS QD spin-coating number on the absorption spectra of TiO₂/CH₃NH₃PbI₃/PbS films.

Figure S5 | Surface SEM images of $CH_3NH_3PbI_3$ grown on a mesoporous TiO_2 layer by the two-step method before (a) and after (b) spinning octane solvent. Scale bar: $1\mu m$

Figure S6 | (a) *J-V* curves of the FTO/CH₃NH₃PbI₃/spiro-MeOTAD/Au solar cells. CH₃NH₃PbI₃ was deposited on TiO₂ film by the two-step method. Different solvents were spanned on the surface of CH₃NH₃PbI₃ perovskite before the spiro-MeOTAD being spanned. (b) Cross sectional SEM image of the FTO/CH₃NH₃PbI₃/spiro-MeOTAD/Au solar cell with octane. Table S3 | Photovoltaic parameters derived from *J-V* measurements of perovskite solar cells in Fig. S6.

Solvent	$V_{\rm oc}\left({ m V} ight)$	$J_{\rm sc}~({\rm mA/cm^2})$	FF	PCE (%)
None	0.93	17.39	0.69	11.11
toluene	0.91	16.90	0.68	10.42
octane	0.93	16.69	0.67	10.32
hexane	0.91	16.28	0.66	9.78
chlorobenzene	0.92	16.28	0.60	9.00