Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

> Electronic Supplementary Material (ESI) for Nanoscale This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

Reprocessable Squeezing Electrode Fabrication of Olive-Like Fe/Co/O Nanoparticles@Three Dimensional Nitrogen-doped Reduced Graphene Oxide for High Performance Lithium Battery

Li-Ya Qi,^a Yi-Wei Zhang,^a Yue-Long Xin,^a Zi-Cheng Zuo,^b Bin Wu, ^{b*} Xin-Xiang

Zhang^{*a*} and Heng-Hui Zhou^{*a**}

^a College of Chemistry and Molecular Engineering, Peking University,

Beijing, P. R. China.

^b Beijing Engineering Research Center of Power Lithium-ion Battery,

Beijing 102200

* Corresponding Author: E-mail: hhzhou@pku.edu.cn; wubin@pulead.com.cn

Fax & Tel: +861062757908.

Figure S1 (a) SEM image of the obtained 3D macroporous structure. (b) (c) HRTEM images of olive-like nanoparticles exited between graphene layers. (d) HRTEM image of folded edges of graphene.

Figure S2 HRTEM images of olive-like nanoparticles embedded between continuous

conductive networks.

Figure S3 (a) SEM image of physical mixture Fe/Co/O+3D N-rGO. (b)SEM image of individual

growth of Fe₂O₃ or in 3D N-doped reduced graphene oxide structure. (c) Co₃O₄@3D N-rGO.

Figure S4 (a) SEM image of Fe/Co/O @ 3D N-rGO composite. (b-e) the corresponding EDX mapping images of C (b), N (c), Fe (d) and Co (e) elements.

Figure S5 (a) TGA curves (b) Raman spectra of Fe/Co/O@3D N-rGO and GO.

Figure S6 (a) CVs for the first three cycles at a potential scanning rate of 0.1 mV s⁻¹. (b) Typical charge-discharge voltage curves of the Fe/Co/O @3D N-rGO electrode at a current density of 1000 mA g^{-1} .

Figure S7 Rate capacity of rGO at different current densities.

Figure S8 (a) Nyquist plots of the obtained Fe/Co/O@3D N-rGO, $Fe_2O_3@3D$ N-rGO and Fe/Co/O+3D N-rGO. (b) Randles equivalent circuit for the three samples.

Table S1 Impedance parameters derived using the equivalent circuit model for Fe/Co/O@3D N-

Samples	$R_{SEI}\left(\Omega ight)$	Rct (Ω)
Fe/Co/O@3D N-rGO	27.9	30.7
Fe ₂ O ₃ @3D N-rGO	78.4	159.2
Fe/Co/O+3D N- rGO	149.8	581.9

rGO, Fe₂O₃@3D N-rGO and Fe/Co/O+3D N- rGO

Figure S9 SEM images of the free-standing Fe/Co/O@3D N-rGO electrode after 500 cycles at the

current density of 1000 mA g⁻¹.