Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Ruiqi Zhao¹, Jianing Zhuang², Zilin Liang^{2,3}, Tianying Yan^{3*}, and Feng Ding^{2*}

¹School of Physics and Chemistry, Henan Polytechnic University, Henan 454003, China

²Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, China

³Institute of New Energy Material Chemistry, Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China

*Authors to whom correspondence should be addressed: tyan@nankai.edu.cn, feng.ding@polyu.edu.hk.

Contents:

- 1. Table S1 $E_{\rm fs}$ of certain configurations observed in the NEMD simulation of V_n, for n = 4, 6, and 8;
- 2. **Table S2** The area of pentagon and heptagon of the 5|7 pair of certain haeckelites, and the resulted area compensation by 5|7 pair relative to two hexagons in the perfect graphene.
- 3. **Fig. S1** Probability distributions of bond lengths in representative configurations of V_n s, for n = 2, 4, 6, and 8.

Table S1 $E_{\rm f}$ s (eV) of certain configurations observed in the NEMD simulation of V_ns, for n = 4, 6, and 8. The optimizations were performed with both REBO2 potential and DFT (in parentheses). The 5-, rotated 6-, 7-, and 8- membered rings and hole-structures are emphasized with yellow, purple, green, red, and dark purple colors, respectively. The haeckelites are distinguished by merged (M-) or separated (S-) with the total number of 5|7 pairs (see the main text).

Table S2 The area of pentagon and heptagon of the 57 pair of certain haeckelites, and the resulted area compensation by 57 pair relative to two hexagons in the perfect graphene.

MVs	V4			V ₆	V ₈
Configurations					
Average area of pentagons (Å ²)	3.59	3.61	3.62	3.56	3.66
Average area of heptagons (Å ²)	7.76	7.87	7.75	7.67	7.72
$\mathbf{S}_5 + \mathbf{S}_7 = n \ \mathbf{S}_6$	2.15	2.18	2.16	2.13	2.16
Compensation(%)	45	54	56	39	48

Note: In the perfect graphene, C-C length is 1.424 Å, and the area of a hexagon is 5.27 Å².

Fig. S1 Probability distributions of bond lengths in representative configurations of V_n s: V_2 (a), V_4 (b), V_6 (c), and V_8 (d). The configurations and partial enlarged regions with bond length exceeds 1.49 Å are also shown as insets.