1 Supporting Information

- 3 Dual-Emission Fluorescent Sensor Based on AIE Organic Nanoparticles and Au
- 4 Nanoclusters for the Detection of Mercury and Melamine
- 6 Caixia Niu,^a Qiuling Liu,^a Zhehai Shang,^a Liu Zhao,^a and Jin Ouyang,^{*a}
- 8 a Key Laboratory of Theoretical and Computational Photochemistry, Ministry of
- 9 Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
- 10 Fax: 861062799838; Tel: 861058805373; E-mail: jinoyang@bnu.edu.cn

- -

3 Scheme S1. Synthesis routes of 9,10-bis(3-formylstyryl)anthracene (BFSA).

4

5

6 **Figure S1.** ¹H NMR spectrum (CDCl₃, 400 MHz) of BFSA.

7

8 Figure S2. Optimized molecular structure of BFSA.

2 Figure S3. Scanning electron microscope (SEM) micrographs of BFSA generated by

3 evaporating suspensions of THF/water mixtures with $f_w = 60\%$, $f_w = 70\%$, $f_w = 80\%$, f_w

4 =90%, respectively.

6 Figure S4. DLS results of A) Ply-BFSA OFNs and B) Au NCs.

7

8 Figure S5. FT-IR spectra of Ply (blank line), BFSA (red line) and Ply-BFSA OFNs9 (blue line).

3

2 Figure S6. Zeta potential of Ply-BFSA OFNs.

4 Figure S7. A) Fluorescence (FL) spectra and B) corresponding FL intensity of Ply5 BFSA OFNs in water with different water concentrations exited at 360 nm. Inset:
6 Fluorescent pictures of Ply-BFSA OFNs in water with the concentrations of 0.2 and
7 6.0 μg·mL⁻¹.

9 Figure S8. Absorption (dash green line), excitation (solid blue line), emission (solid
10 red line) spectra, and fluorescent pictures (insert) of aqueous solution of Au NCs.

2 Figure S9. Zeta potential of Au NCs.

4 Figure S10. The fluorescence intensities of OFNs (1.6 μ g·mL⁻¹) with different doses

5 of Au NCs.

6

3

8 Figure S11. MTT assay of HeLa cells treated with different concentrations of Ply-9 BFSA OFNs for 24 h.

2 Figure S12. MTT assay of HeLa cells treated with different concentrations of Ply-

4

5 Figure S13. The fluorescence intensity ratios F₆₂₅/F₅₂₅ of dual-emission nanoprobes
6 (red line), nanoprobe with Hg²⁺ (green line), and nanoprobe with Hg²⁺ and melamine
7 (pink line).

Figure S14. Fluorescence emission spectra of the Au NCs upon exposure to different
 concentrations of Hg²⁺. The inset photos show the corresponding fluorescence colors
 under UV illumination, respectively.

- 4
- 5

6

7 Figure S15. The fluorescence intensity ratios F₆₂₅/F₅₂₅ of dual-emission nanoprobes
8 with various metal ions (Hg²⁺, Ni²⁺, Mn²⁺, Pb²⁺, Fe³⁺, Cd²⁺, Co²⁺, Ag⁺, Al³⁺, Zn²⁺, and
9 Cu²⁺ at 800 nM) in PBS (10 mM, pH=7.4)

10 Equation for the calculate binding constant:

13 Figure S16. The double-log plots of Hg^{2+} quenching effects on Au NCs.

2 Figure S17. Fluorescence emission spectra of the Au NCs upon exposure to different

3 concentrations of Fe^{3+} .

5 Figure S18. The double-log plots of Fe^{3+} quenching effects on Au NCs.

6

7 **Figure S19.** The fluorescence intensity ratios F_{625}/F_{525} of dual-emission nanoprobes 8 with melamine, cysteine, glutathione, homocysteine, histidine, thymine and glycine at 9 20 μ M in PBS (10 Mm, pH=7.4).

1

3 Figure S20. Ply-BFSAOFNs@Au NCs dispersed in 1% human serum (bar: 25 nm),

4 insert picture shows the surface of Ply-BFSA OFNs@Au NCs (bar: 15 nm).

5

6

7 Figure S21. Fluorescence images of HeLa cells after incubation with Ply-BFSA 8 OFNs for 4 h; Solvents are THF/water mixtures with f_w =99.5 %; Excitation 9 wavelength is 405 nm. A) fluorescence images; B) bright-field images; C) merged 10 images of the fluorescence images and bright-field images. Fluorescence images of 11 HeLa cells after incubation with Ply-BFSA OFNs@Au NCs for 4 h; Solvents are 12 THF/water mixtures with f_w =99.5 %; Excitation wavelength is 405 nm.D) 13 Fluorescence images; E) bright-field images; F) merged images of the fluorescence 14 images and bright-field images.

Figure S22. Fluorescence images of HeLa cells after incubation with Ply-BFSA 2 OFNs@Au NCs for 4 h; Solvents are THF/water mixtures with f_w =99.5 %; Excitation 3 wavelength is 405 nm. A) fluorescence images; B) bright-field images; C) merged 4 images of the fluorescence images and bright-field images. Fluorescence images of 5 HeLa cells after incubation with Hg²⁺ (400 nM) for 1 h and Ply-BFSA OFNs@Au 6 NCs for 4 h; Solvents are THF/water mixtures with $f_w=99.5$ %; Excitation wavelength 7 is 405 nm. D) Fluorescence images; E) bright-field images; F) merged images of the 8 9 fluorescence images and bright-field images.

10

Figure S23. Fluorescence images of HeLa cells after incubation with Hg²⁺ (200 nM) for 1 h and Ply-BFSA OFNs@Au NCs for 4 h; Solvents are THF/water mixtures with $f_w=99.5$ %; Excitation wavelength is 405 nm. A) fluorescence images; B) bright-field images; C) merged images of the fluorescence images and bright-field images. Fluorescence images of HeLa cells after incubation with Hg²⁺ (200 nM) and melamine (6 μM) for 1 h and Ply-BFSA OFNs@Au NCs for 4 h; Solvents are
 THF/water mixtures with f_w=99.5 %; Excitation wavelength is 405 nm. D)
 Fluorescence images; E) bright-field images; F) merged images of the fluorescence
 images and bright-field images.

6 **Figure S24.** ITC profile for the binding of Hg^{2+} and melamine.

1

2 Figure S25. ITC profile for the binding of Hg^{2+} and GSH

4 Figure S26. Fluorescence intensities of Hg²⁺ (200 nM) and Au NCs; Hg²⁺ (200 nM),
5 melamine (6 μM) and Au NCs; Hg²⁺ (200 nM), melamine (6 μM), GSH (10 mM) and
6 Au NCs.