Supporting Information

Pressure confinement effect in MoS₂ monolayers

Fangfei Li¹, Yalan Yan¹, Bo Han¹, Liang Li¹, Xiaoli Huang¹, Mingguang Yao¹, Yuanbo Gong¹, Xilian Jin¹, Baoli Liu², Chuanrui Zhu², Qiang Zhou^{1*} and Tian Cui¹

State Key Laboratary of Superhard Materials, College of Physics, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P.R. China.

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China

E-mail: zhouqiang@jlu.edu.cn

Fig. S1 High pressure Raman of Exfoliated monolayer

High pressure Raman spectra of exfoliated monolayer(2nd sample), liquid Ar was used as the pressure transmitting medium, and Ar is sealed at a initial pressure of 4.2GPa.

Fig. S2 High pressure PL spectra of exfoliated monolayer

Fig. S3 Pressure dependence of Raman frequency for different Raman modes from the samples studied in this work.

Fig. S4 Pressure dependence of PL intensity of CVD grown monolayer MoS₂.