Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes

Xiaobei Zang^a, Xiao Li^{a,b}, Miao Zhu^{a,b}, Xinming Li^c, Zhen Zhen^{a,b}, Yijia He^{a,b}, Kunlin Wang^a,

Jinquan Wei^a, Feiyu Kang^{a,d}, Hongwei Zhu^{a,b*}

^aSchool of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Materials Processing Technology (MOE), Tsinghua University, Beijing 100084, China

^bCenter for Nano and Micro Mechanics (CNMM), Tsinghua University, Beijing 100084, China

^cNational Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, China ^dGraduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

*Email: hongweizhu@tsinghua.edu.cn

Figure S1. SEM image of GWF+PANI (15 min).

Figure S2. Raman spectrum of PET.

Figure S3. CV curves of (a) GWF-based and (b) GWF+PANI based supercapacitors.

Figure S4. (a) CV curves of GWF+PANI (scan rate: 60 mV/s to 1 V/s). (b) CV curves at the scan rate of 60 mV/s, (c) Galvanostatic charge/discharge curves of GWF+PANI (Current density: 0.1 mA/cm²). (d) Nyquist plots.

Figure S5. Ragone plots for GWF and GWF+PANI devices.