Electronic Supplementary Information

Europium-engineered iron oxide nanocubes with high T_1 and T_2 contrast abilities for MRI in living subjects

Lijiao Yang,[†]Zijian Zhou,[†]Hanyu Liu,[†] Changqiang Wu,[‡]Hui Zhang,[†]Guoming Huang,[†]Hua Ai[‡]

and Jinhao $Gao^{*,\dagger}$

[†]State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical

Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and

Chemical Engineering, Xiamen University, Xiamen 361005, China. [‡]National Engineering

Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.

Email: jhgao@xmu.edu.cn

Figure S1. Representative TEM images of monodisperse EuIO nanocubes with different Eu molar ratios. (a) 6.4%, (b) 10.3% and (c) 15.1%, respectively. The metal concentrations were measured by ICP-AES.

Figure S2. TEM images of (a) Fe₃O₄ and (b) Eu₂O₃ nanoparticles with similar diameter of about 14

nm.

Figure S3. Relaxivitity measurements of EuIO nanocubes with different sizes. (a) R_1 and (b) R_2 of 10, 14 and 20 nm EuIO nanocubes on a 0.5 T scanner. The relaxivity values r_1 and r_2 were obtained from the slopes of linear fits of experimental data.

Table S1. Comparisons of the r_1 and r_2 values of EuIO nanocubes with different sizes at 0.5 T.

Sizes (nm)	<i>r</i> ₁ (mM ⁻¹ s ⁻¹)	r ₂ (mM ⁻¹ s ⁻¹)	r_2/r_1
EuIO-10	26.74±0.33	79.44±2.29	2.97
EuIO-14	36.79±1.16	97.52±2.16	2.65
EuIO-20	41.43±1.34	171.32±4.12	4.14

Figure S4. Relaxivitity measurements of EuIO nanocubes with different Eu molar ratios. (a) R_1 and (b) R_2 of EuIO nanocubes with Eu molar ratios of 6.4%, 10.3% and 15.1% on a 0.5 T scanner.

Table S2. Summary of the r_1 and r_2 relaxivity of 14 nm sized EuIO nanocubes with different Eu molar ratios on a 0.5 T MR scanner.

Eu molar ratios (%)	r_1 (mM ⁻¹ s ⁻¹)	<i>r</i> ₂ (mM ⁻¹ s ⁻¹)	r_2/r_1
EuIO-6.4	22.51±0.46	112.07±0.97	4.98
EuIO-10.3	36.79±1.16	97.52±2.16	2.65
EuIO-15.1	31.68±0.25	81.63±3.15	2.57

Figure S5. Relaxivity (a) r_1 and (b) r_2 values of EuIO nanocubes, Fe₃O₄ nanoparticles and Eu₂O₃ nanoparticles with similar size at 0.5 T.

Figure S6. Biocompatibility of EuIO nanocubes. (a) MTT assay of SMMC-7721 cells incubated with EuIO nanocubes for 24 h and 48 h (n = 5/group), (b) MTT assay of MRC-5 normal cells incubated with EuIO nanocubes for 24 h (n = 5/group). Concentration correspond to total metal ions [Fe+Eu] measured by ICP-AES.

Figure S7. Quantitative analysis of cell uptake by ICP-MS (after subtraction of the inherent Fe inside cells) incubated with EuIO nanocubes (black) and Fe_3O_4 (red) nanoparticles with respect to total metals.

Table S3. MR signal-to-noise ratio (SNR) changes of cells incubated with EuIO nanocubes and Fe₃O₄ nanoparticles with different concentrations in T_1 images (n = 3/group). We calculated the SNR by the equation: $\text{SNR}_{\text{cell}} = \text{SI}_{\text{cell}}/\text{SD}_{\text{noise}}$, where SI represents signal intensity and SD represents standard deviation. The SNR changes were calculated by the equation: $\text{SNR} = |\text{SNR}_{\text{post}} - \text{SNR}_{\text{pre}}|/\text{SNR}_{\text{pre}}$.

Total metals (mM)	SNR _{pre} (0 mM) (%)	SNR _{post} (%)	ΔSNR _{post} (%)
EuIO-0.2	100	110.4±5.4	10.4±5.4
Fe ₃ O ₄ -0.2	100	103.6±4.3	3.6±4.3
EuIO-0.4	100	127.0±2.3	27.0±2.3
Fe ₃ O ₄ -0.4	100	105.9±3.5	5.9±3.5
EuIO-0.8	100	161.4±5.3	61.4±5.3
Fe ₃ O ₄ -0.8	100	113.5±4.5	13.5±4.5

Table S4. SNR changes of cells incubated with EuIO nanocubes and Fe₃O₄ nanoparticles with different concentrations of T_2 images (n = 3/group).

Total metals (mM)	SNR _{pre} (0 mM) (%)	SNR _{post} (%)	∆SNR _{post} (%)
EuIO-0.2	100	84.6±5.3	15.4±5.3
Fe ₃ O ₄ -0.2	100	82.5±2.6	17.5±2.6
EuIO-0.4	100	68.4±3.6	31.6±3.6
Fe ₃ O ₄ -0.4	100	64.4±2.4	35.6±2.4
EuIO-0.8	100	38.0±1.4	62.0±1.4
Fe ₃ O ₄ -0.8	100	31.9±2.8	68.1±2.8

Table S5. SNR changes of region of interests (ROIs) in T_1 imaging before and after intravenous injection of EuIO nanocubes at 3 T (n = 3/group). We calculated the SNR by the equation: SNR_{heart} = SI_{heart}/SD_{noise}.

Time (min)	SNR _{pre} (%)	SNR _{post} (%)	ΔSNR _{post} (%)
0	100	100	0
1	100	162.2±2.9	62.2±2.9
3	100	127.1±2.2	27.1±2.2
5	100	119.5±1.9	19.5±1.9

Table S6. SNR changes of ROIs in T_2 imaging before and after intravenous injection of EuIO nanocubes at 3 T (n = 3/group). We calculated the SNR by the equation: SNR_{liver} = SI_{liver}/SD_{noise}.

Time (min)	SNR _{pre} (%)	SNR _{post} (%)	∆SNR post (%)
0	100	100	0
30	100	45.2±2.6	54.8±2.6
90	100	22.7±1.6	77.3±1.6
150	100	31.1±1.3	68.9±1.3