Supporting information

Positively-charged Reduced Graphene Oxide as an Adhesion Promoter for Highly-stable Silver Nanowire Film

Qijun Sun,[†] Seong Jun Lee,[†] Hyungseok Kang, Yuseong Gim, Ho Seok Park, Jeong Ho Cho*

Figure S1. AFM images and height profiles of the $rGO-NH_3^+$ layers prepared with four different coverage levels.

Figure S2. SEM images of the pristine AgNWs and AgNWs films with adhesion promoters of PAH, GO- NH_3^+ , and rGO- NH_3^+ .

Figure S3. Optical transmittance (at 550 nm) of the AgNWs films as a function of the surface coverages of $GO-NH_3^+$, and $rGO-NH_3^+$ layers.

Figure S4. Sheet resistance as a function of ultrasonication time in IPA of the AgNWs films with adhesion promoters of (a) GO-NH_3^+ and (b) rGO-NH₃⁺ with different surface coverages.

Figure S5. Sheet resistance as a function of the detachment cycles (using 3M scotch tape) of the AgNWs with PAH and rGO-NH₃⁺. Inset shows the SEM image of the pristine AgNWs film after one time detachment.

Figure S6. Schematic geometry of the bending test. The strain along the substrate length direction (ε_y) was calculated from $\varepsilon_y = h/2R$, where, $R \cdot 2\theta = L_0$, $sin\theta = L/2R$.

Figure S7. (a) Sheet resistances of the adhesion promoters of PAH, $GO-NH_3^+$ and $rGO-NH_3^+$. (b) Sheet resistances of the rGO-NH₃⁺ layer with different surface coverage levels.