Supporting Information

Superior plasmon absorption in iron-doped gold nanoparticles

Vincenzo Amendola,^{1,*} Rosalba Saija,² Onofrio M. Maragò,³ and Maria Antonia Iatì³

¹Department of Chemical Sciences, University of Padova, via Marzolo 1, I-35131 Padova, Italy

²Dipartimento di Fisica e di Scienze della Terra, Università di Messina, v.le F. Stagno D'Alcontres 31, I-98166 Messina, Italy

³CNR-IPCF, Istituto per i Processi Chimico-Fisici, v.le F. Stagno D'Alcontres 37, I-98158 Messina, Italy

* vincenzo.amendola@unipd.it

Figure S1. Explanation of the two parameters σ [400-1200nm] and σ (800nm): the first is the area of the cross section in the 400-1200nm spectral range (in m³), the latter is its value at 800nm (in m²).

Figure S2. Mie theory calculations of σ_{Abs} in iron-doped NSs with structural parameters extracted from literature (for details see the manuscript). Matrix is water in all cases.

Figure S3. Mie theory calculations of σ_{Abs} in iron-doped NSs with constant ratio of core radius and shell thickness (4:1) and variable size.

Figure S4. Mie theory calculations of σ_{Abs} in iron-doped NSs with constant diameter (140nm) and variable ratio of core radius and shell thickness.

Figure S5. Mie theory calculations of σ_{Abs} in iron-doped nanospheres with variable size.

Figure S6. DDA calculations of σ_{Abs} in iron-doped dimers of two identical nanospheres with variable size and interparticle gap of 1nm. (a) Integral in the 400-1200nm range of $C_{Abs} = \sigma_{Abs}/(\pi R^2)$, where R is the sphere's radius. In this graph, the difference in absorption among the four different compositions are more evident. (b-h) Spectral dependence of σ_{Abs} .

Figure S7. DDA calculations of σ_{Abs} in iron-doped hemispherical NRs with variable size and constant aspect ratio of 2.5.

Figure S8. DDA calculations of σ_{Abs} in iron-doped hemispherical NRs with constant size of 110nm and variable aspect ratio.

Figure S9. Experimentally measured optical constants for pure Au (black line), $Au_{84}Fe_{16}$ (circles) and $Au_{73}Fe_{27}$ (triangles) alloys (for details see experimental section).

Figure S10. Comparison of experimentally measured ε " for pure Au (black line) and Au₇₃Fe₂₇ alloys (red) with the linear average of ε " taken from pure Au (73%) and pure Fe (27%). The experimental ε " of the alloy is remarkably larger than the linearly weighted average of ε " taken from the two pure metals, showing that modification of the ε " is not given just by the sum of *d*-level transitions of Fe with those already present in Au.