Supporting Information

High-Performance Graphene/Sulphur Electrodes for Flexible Li-Ion Batteries Using Low-Temperature Spraying Method

Pushpendra Kumar^{1,2}, Feng-Yu Wu³, Lung-Hao Hu⁴, Sayed Ali Abbas², Jun Ming³, Chia-Nan Lin⁵, Jason Fang⁵, Chih-Wei Chu^{2*}, Lain-Jong Li^{3*}

Figure S1. The thickness distribution for the graphene flake samples obtained, where theirthickness is from 4 nm to 15 nm. Selected Raman and X-ray photoemission spectroscopy (XPS) results for these flakes are also shown.

Figure S2. SEM images of the thickness distribution for the graphene-S composite sprayed over Al foil. The average thickness is \sim 45 μ m.

Figure S3. (a) Charge/discharge response and (b) Cycling response of the sprayed Graphene -S composite system prepared through mechanical mixing (Graphene : S = 20:80).

Figure S4. The charge/discharge Coulombic efficiency for the cells based on the electrodes graphene:S= 20:80 (a) without and (b) with a graphene capping layer is around 98% in the cycle test.

Figure S5. (a-b) Scanning electron microscopy images (top view) of the sprayed graphene-S composite after cycling. **(c-d)** EDS mapping confirm the uniform distribution of S even after cycling over the sprayed Graphene-S electrode.

Figure S6. Transmission electron microscopy (TEM) images of the sprayed graphene-S electrode composite before and after cycling.

Figure S7. (a) Ragone plot at different charge/discharge voltages for the battery made from (Graphene : S = 20:80). (b) Nyquist plot for the sprayed Gr-S cathode before cycling from 10 kHz to 10 mHz at room temperature (Graphene : S = 20:80).