Electronic Supplementary Information

Hydrous RuO₂ nanoparticles as an efficient NIR-light induced photothermal agent for ablation of cancer cells *in*

Vitro and in Vivo

Zhiyin Xiao, ‡^{*a,b*} Xiaohong Jiang, ‡^{*c*} Bo Li, ‡^{*a*} Xijian Liu, ^{*d*} Xiaojuan Huang, ^{*a*} Yuxin Zhang, ^{*a*} Qilong Ren, ^{*a*} Jie Luo, ^{*a*} Zongyi Qin^{*a*} and Junqing Hu*^{*a*}

^a State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Materials Science and Engineering, Donghua University, Shanghai
201620, China. Fax: +86-21-6779-2947;Tel: +86-21-6779-2947; E-mail:
hu.junqing@dhu.edu.cn
^b College of Biological, Chemical Sciences and Engineering, Jiaxing University,
Jiaxing 314001, China. E-mail: zhiyin.xiao@mail.zjxu.edu.cn
^c Department of Pharmacy, School of Medicine Science, Jiaxing University, Jiaxing
314001, China. E-mail: ajxh2003@163.com
^d College of Chemistry and Chemical Engineering, Shanghai University of
Engineering Science, Shanghai 201620, China. E-mail: liuxjjian@sues.edu.cn
* Corresponding Author.

Fig. S1 TEM image and dynamic light scattering (DLS) diameter distribution of the hydrous RuO₂ nanoparticles.

Fig. S2 Thermal gravimetric (TG) analysis of the hydrous RuO₂ nanoparticles.

Fig. S3 Energy dispersed spectroscopy (EDS) of the hydrous RuO₂ nanoparticles.

Fig. S4 A wide-scan XPS spectrum of the hydrous RuO₂ nanoparticles.

Fig. S5 X-ray powder diffraction patterns of the hydrous RuO_2 NPs and annealed RuO_2 (400 °C) NPs with the standard JCPDS file (No. 43-1027).

Fig. S6 UV-Vis-NIR absorption spectra of the hydrous RuO₂ NPs and annealed RuO₂ nanoparticles.

Fig. S7 Diameter and zeta potential of the RuO₂ NPs with different PVP concentrations.

Fig. S8 Temperature elevation curves of the RuO_2 NPs solutions (1600 ppm) with different PVP concentrations.

Fig. S9 Typical TEM and diameter distribution of PVP-RuO₂ NPs

Fig. S10 (a) UV-Vis-NIR absorption spectra of the PVP-RuO₂ NPs with different concentrations and (b) corresponding linear relationship of the absorbance at 775 nm versus concentrations.

Fig. S11 Temperature changes versus NPs concentrations at different laser power densities.

Fig. S12 Images of MCF-7 cells treated with a NPs concentration of 40 (a), 100 (b), 200 (c), 400 (d), 800 (e) and 1600 ppm (f) for 24 h (scale bar: 100μ m).

Fig. S13 Images of MCF-7 cells treated with an 808-nm laser for 5 min at a NPs concentration of 40 (a), 100 (b), 200 (c), 400 (d), 800 (e) and 1600 ppm (f) (scale bar: $100 \ \mu m$).