Cotton-Derived Bulk and Fiber Aerogels Grafted with

Nitrogen-Doped Graphene

Chunhui Wang,1 Yibin Li,1* Xiaodong He,1 Yujie Ding,1 Qingyu Peng,1 Wenqi Zhao,1

Enzheng Shi,² Shiting Wu,² Anyuan Cao²*

¹Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, P. R.

China

²Department of Materials Science and Engineering, College of Engineering, Peking University,

Beijing, P. R. China

*Corresponding authors. Email: liyibin@hit.edu.cn, anyuan@pku.edu.cn

Supplementary Information:

1. Figure S1. g-C₃N₄ and carbon immediate produced from urea and raw cotton at 500-600 °C.

2. Figure S2. Photograph of CF@N-G aerogel.

3. Figure S3. The stress-strain curves of CF@N-G aerogel at the maximum strain of 50% for 1000 cycles.

4. Figure S4. Morphology of CF@N-G fiber-shaped aerogel.

5. Figure S5. Morphology of CF@N-G aerogel fabricated by different ratios of raw cotton and urea.

6. Figure S6. Product of urea heated without raw cotton under the same conditions as synthesis of CF@N-G.

7. Figure S7. TEM images of N-graphene grafted to carbon fiber.

8. Figure S8. Raman spectrum, XPS spectrum of CF@N-G synthesized under different temperature.

9. Figure S9. Electrochemical performances of CF@N-G//CF@N-G-based supercapacitor measured in a two-electrode system.

10. Figure S10. Electrochemical performances of CF@N-G electrodes measured in a three-electrode system

11. Table S1. Electrochemical performance of different N-doping graphene aerogels (hydrogels)

Figure S1. a, b) g-C₃N₄ and carbon immediate produced from urea and raw cotton at 500-600 °C, respectively. c,d) FT-IR spectrum of a) and b).

Figure S2. a) A cylindrical CF@N-G aerogel ($\rho = 14 \text{ mg cm}^{-3}$) stands on a dog's tail-like flower. b) Sorption of organic liquids by CF@N-G aeroel. c) Photograph of CF@N-G aerogel in a hot flame of an alcohol burner.. d) A water drop stands on the aerogel while the oil drop is adsorbed by the aerogel. e, f) g-C₃N₄ and carbon immediate produced from urea and raw cotton at 500-600 °C, respectively.

Figure S3. a) The stress-strain curves of CF@N-G aerogel at the maximum strain of 50% for 1000 cycles. b) The interior structure of sample a) before and after the cycling tests.

(a)

Figure S4. a) Morphology of CF@N-G fiber-shaped aerogel. b) Morphology of helix CF@N-G fiber. Carbon fibers are broken because of twist.

Figure S5. Morphology of CF@N-G aerogel fabricated by different ratios of raw cotton and urea.

Figure S6. a) SEM image of $g-C_3N_4$. b) Product of urea heated without raw cotton under the same conditions as synthesis of CF@N-G. c) TEM image of $g-C_3N_4$. d) TEM image of product b).

Figure S7. TEM images of a) N-graphene grafted to carbon fiber. As the white arrow points, N-graphene grow directly from the plane of carbon fiber, indicating the carbon-carbon bonding. b) The as-prepared nitrogen-doped graphene nanosheet.

Figure S8. a) Raman spectrum CF@N-G synthesized under different temperature. b) XPS survey spectrum of CF@N-G synthesized under different temperature. c, d) High-resolution N1s XPS spectra of CF@N-G at different synthesis temperature.

Figure S9. Electrochemical performances of CF@N-G//CF@N-G-based supercapacitor measured in a two-electrode system. a) CVs of CF@N-G-3, CF@N-G-5 and CF@N-G-10 devices at 100 mV/s in 6 M KOH aqueous solution. b) Calculated specific capacitances of the CF@N-G-3, CF@N-G-5 and CF@N-G-10 devices. c) Galvanostatic charge-discharge curves of CF@N-G-5//CF@N-G-5 device at a current density of 1, 2, 5, and 10 A/g. d) CVs curves of CF@N-G-5//CF@N-G-5 device at different scan rates.

Figure S10. a) CVs of CF Aerogel electrode at different scan rate in 6 M KOH aqueous solution. b) Calculated specific capacitances of the CF@N-G-5 900 °C and 1100 °C electrodes. c, d) The CV curves of CF@N-G-5 900 °C and 1100 °C electrodes for cycle 1, 5000, 10000, repectively.

Starting	N-doning	Specific	Conditions	Cycling	Reference
materials	method	canacitance	Conditions	retention	Reference
GO+Pyrrole	1 Hydrothermally	484 F g ⁻¹	Three-electrode (1	100%	1
(Aerogel)	treated:2.Annealed			(1000 cvcles)	
(- 6-)	· · · · · · · · · · · · · · · · · · ·		A g-1, 1 M	(
			LiClO4)		
GO+NH3BF3	Hydrothemally	190 F g ⁻¹	Three-electrode(1	110%	2
(Aerogel)	treated at 180 □	C		(1000 cycles)	
			mv/s,		
			PVA/H2SO4)		
			Two-electrode(0.5	96%	
GO+CNTs	Hydrothermal	180 F g ⁻¹		(3000 cycles)	3
+Pyrrole	process		A g-1, 6 M KOH)		
(Aerogel)					
			Two-electrode(0.2	92%	4
GO+Ammonia	Hydrothermal	223 F g ⁻¹	A g-1, 1 M	(2000 cycles)	
(Aerogel)	process		H2SO4)		
	II doe de come el	100.1 E 1	Two-electrode(10	05.20/	-
GO+Organic	Hydrothermal	190.1 F g ⁻		95.2%	5
Amine	process		A g-1, 5 M KOH)	(4000 cycles)	
(Hydrogel)					
GO+Pyrrole	1 Solution-based	335 7 F g ⁻¹	Three-electrode(1	99.5%	
(3D	Polymeration: 2	000001118	mV/s, 1 M	(1000 cycles)	
(52 framework)	Aneealed		H2SO4)	(1000 0)0100)	6
					Ū
GO+Organic	Solvothermal			97.1%	
Amine	Reaction	301 F g ⁻¹	Two-electrode(0.1	(4000 cycles)	
(Hydrogel)			A g-1, 6 M KOH		7
Raw Cotton+			Two-electrode(2	120%	
Urea(Aerogel)	Thermal Anealling	107.5 g ⁻¹	mV/s, 6 M KOH	(10,000	This work
				cycles)	

 Table S1. Electrochemical performance of different N-doping graphene aerogels (hydrogels)

References:

1 Zhao, Y.; Hu, C. G.; Hu, Y.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. A Versatile, Ultralight, Nitrogen-Doped Graphene Framework. *Angew. Chem. Int. Ed.* 2012, **51**, 11371-11375.

- 2 Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L; Mullen, K. Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. *Adv. Mater.* 2012, 24, 5130-5135.
- 3 You, B.; Wang, L. L.; Yao, L.; Yang, J. Three Dimensional N-Doped Graphene-CNT Networks for Supercapacitor. *Chem. Commun.*, 2013, **49**, 5016-5018.
- 4 Sui, Z. Y.; Meng, Y. N.; Xiao, P. W.; Zhao, Z. Q.; Wei, Z. X; Han, B. H. Nitrogen-Doped Graphene Aerogels as Efficient Supercapacitor Electrodes and Gas Adsorbents. *ACS Appl. Mater. Interfaces* 2015, 7, 1431-1438.
- 5 Chen, P.; Yang, J. J.; Li, S. S.; Wang, Z.; Xiao, T. Y.; Qian, Y. H.; Yu, S. H. Hydrothermal Synthesis of Macroscopic Nitrogen-Doped Graphene Hydrogels for Ultrafast Supercapacitor. *Nano Energy* 2013, **2**, 249-256.
- 6 Ning, X. T.; Zhong, W. B.; Li, S. C.; Wang, Y. X.; Yang, W. T. High Performance Nitrogen-Doped Porous Graphene/Carbon Frameworks for Supercapacitors. *J. Mater. Chem. A.*, 2014, **2**, 8859-8867.
- 7 Lu, Y. H.; Zhang, F.; Zhang, T. F.; Leng, K.; Zhang, L.; Yang, X.; Ma, Y. F.; Huang, Y.; Zhang, M. J.; Chen, Y. S. Synthesis and Supercapacitor Performance Studies of N-Doped Graphene Materials Using *O*-Phenylenediamine as the Double-N Precursor. *Carbon*, 2013, **63**, 508-516.