Electronic Supplementary Information

Sulfur-Infiltrated Graphene-Backboned Mesoporous Carbon Nanosheets with Conductive Polymer Coating for Long-life Lithium-Sulfur Batteries

Yanfeng Dong, Shaohong Liu, Zhiyu Wang,* Yang Liu, Zongbin Zhao,* and Jieshan Qiu *

Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China

Experimental details

Fabrication of graphene-backboned mesoporous carbon (GC) nanosheets: Graphite oxide (GO) was prepared via a modified Hummers' method reported elsewhere.¹ Graphene-based mesoporous silica (G-mSiO₂) nanosheets were fabricated by the hydrolysis of tetraethylorthosilicate (TEOS) on GO in the presence of CTAB and NaOH.² They were employed as the template for nanocasting of GC nanosheets. Typically, 230 mg of G-mSiO₂ was immersed in ethanol solution of sucrose (758 mg in 100 mL) for 5 h under stirring at 100 °C. After annealing at 700 °C for 1 h in N₂, GC nanosheets were obtained by etching out the silica in carbon-filled G-mSiO₂ nanosheets. The content of graphene in GC is ca. 35.2 wt.%, as measured by the difference in sample weight before and after loading mesoporous carbon.

Preparation of sulfur-infiltrated graphene-backboned mesoporous carbon (GCS) nanosheets: GCS nanosheets were synthesized by heating the mixture of sulfur powder and GC sample in an Ar-filled container at 155 °C for 12 h. For comparison, graphene-sulfur (GS) composite was also prepared following the similar procedure except that thermal reduced graphene sheets were used.

PPy nanocoating of GCS nanosheets: Aqueous solution of ammonium peroxydisulfate (APS, 4.38 M, 10 mL) was dropwisely added into the mixture of pyrrole (60 μ L), concentrate hydrochloric acid (120 μ L, 37 %) and the suspension of GCS nanosheets (160 mg) in distilled water (100 mL) and ethanol (2 mL) at room temperature. After constant stirring for 6 h, the precipitate was harvested by several rinsing-filtration cycles with distilled water and drying at 50 °C, yielding GCS@PPy nanosheets. For comparison, the composites consisting of graphene-sulfur composite with (GS@PPy, 62 wt.% S) or without PPy coating (GS, 64 wt.% S) and PPy-coated mesoporous carbon-sulfur composite (CS@PPy, 65 wt.% S) were also

prepared following the similar procedure without the introduction of graphene, mesoporous carbon or pyrrole.

The sulfur content (W_s) in GCS@PPy sample is 64 wt.%, as characterized by TGA analysis conducted in N_2 flow. The content of PPy (W_{PPy}) in this sample is measured to be 11 wt.% by the difference in sample weight before and after PPy coating. Therefore, the content of graphene (W_G) and mesoporous carbon (W_c) in GCS@PPy sample can be calculated by following equations:

 $W_G = 35.2 \text{ wt.}\% \times (1 - W_s - W_{PPy}) = 8.8 \text{ wt.}\%$

$$W_C = 1 - W_s - W_{PPv} - W_G = 16.2$$
 wt. %.

Material characterization: The morphology and microstructure of the samples was characterized with field-emission scanning electron microscopy (FESEM, QUANTA 450) and transmission electron microscopy (TEM, FEI TF30). Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku D/Max 2400 type X-ray spectrometer (Cu K α , $\lambda = 1.5406$ Å). The Raman analysis was carried out on RENISHAW inVia Raman microscope. The surface characteristics of the samples were investigated using a Nicolet-20DXB Fourier transform infrared spectrometer (FTIR). The weight ratio of sulfur in the samples was measured by thermogravimetric analysis (TGA, Shimadzu, DRG-60) in N₂ flow. The textural properties of the samples were measured by Micrometrics ASAP 2020 surface area and porosity analyzer at 77 K.

Electrochemical measurement: The electrochemical measurements were conducted using CR2026 coin cells with pure lithium foil as the counter and reference electrode at room temperature. The working electrode consists of a test material (e.g., GS, GCS or GCS@PPy nanosheets), carbon black (Super-P-Li) and polyvinylidene difluoride (PVDF) in a weight ratio of 7:2:1. The electrolyte used is 1.0 M lithium bistrifluoromethanesulfonylimide (LiTFSI) in 1, 3-dioxolane (DOL) and 1, 2-dimethoxyethane (DME) (1:1 by volume) with 1.0 wt. % LiNO₃ additive. Cell assembly was carried out in an Ar-filled glovebox with concentrations of moisture and oxygen below 1.0 ppm. The galvanostatic charge/discharge tests were performed using a LAND CT2001A electrochemical workstation at different current densities within a cut-off voltage window of 1.5-3.0 V. The specific capacity is calculated based on the mass of the sulfur. The average loading amount of the sulfur on the electrodes is ca. 0.4-0.6 mg cm⁻². Cyclic voltammetry (CV) study was conducted using a CHI

660A electrochemical workstation between 1.5-3.0 V at a scan rate of 0.1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was performed using a CHI660A electrochemistry workstation by applying AC amplitude of 5 mV over the frequency range from 0.01 to 10^5 Hz.

- 1. H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi and J. Qiu, *Carbon*, 2012, **50**, 3267.
- 2. S. Yang, X. Feng, L. Wang, K. Tang, J. Maier and K. Müllen, Angew. Chem. Int. Ed., 2010, 49, 4795.

Figure S1. (a) SEM and (b) TEM image of GC nanosheets.

Figure S2. N_2 adsorption/desorption isotherms of GC sample. The corresponding pore size distribution is shown as the inset.

Figure S3. TGA curves of GCS@PPy sample.

Figure S4. XPS full scan of GCS@PPy sample.

Figure S5. Electrochemical impedance spectroscopy of GCS@PPy and CS@PPy electrodes

Figure S6. Optical photos of the separators detached from the cells using GCS@PPy, GCS and GS electrodes. The cells were discharged to 2.0 V before disassembly.

Figure S7. (a) SEM and (b) TEM image of GCS@PPy electrode after deep cycling; (c) elemental mapping showing the homogenous distribution of carbon, sulfur and nitrogen in the sample.