Supplementary Information:

Low voltage and high ON/OFF ratio field-effect

transistors based on CVD MoS₂ and ultra high-k PZT

gate dielectric

Changjian Zhou,^{ab} Xinsheng Wang,^a Salahuddin Raju,^b Ziyuan Lin,^a Daniel Villaroman,^c Baoling Huang,^c Helen Lai-Wa Chan,^a Mansun Chan^b and Yang Chai^{*a}

^a Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.

Email:ychai@polyu.edu.hk

^b Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong

c Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong

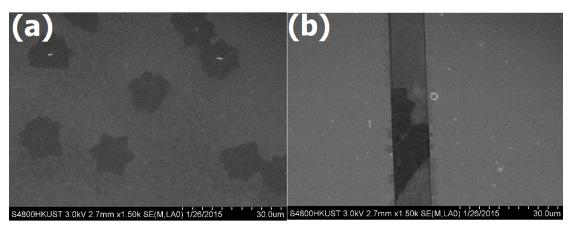


Fig. S1 SEM pictures of the transferred MoS_2 flakes on the PZT substrate. (a) Some triangular MoS_2 flakes are merged during the growth. (b)A typical device with Au/Ti electrodes on a MoS_2 flake.

We have fabricated PZT gated MoS₂ transistors with different channel dimensions and presented the transfer characteristics of several devices as following:

a) Electrical characteristics of MoS₂ transistor with L= 2 μ m and W= 20 μ m. For this device, V_T=0.2 V, SS= 104 mV/dec, and μ =10.01 cm²/V·s.

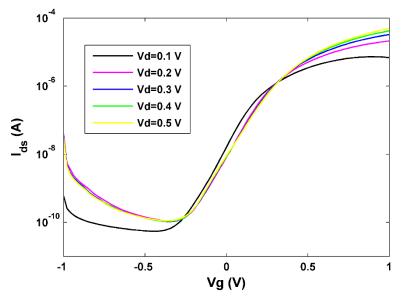


Fig. S2 Transfer characteristics of a MoS₂ transistor with L= 2 μ m and W= 20 μ m.

b) MoS₂ transistor with L= 4 μ m and W= 5 μ m. For this device, V_T=0.41 V, SS= 109 mV/dec, and μ =6.19 cm²/V·s.

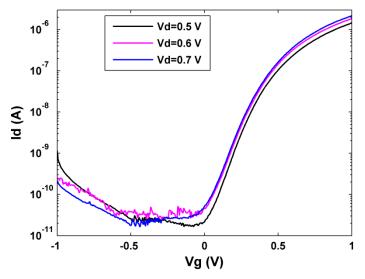


Fig. S3 Transfer characteristics of a MoS_2 transistor with L= 4 μ m and W= 5 μ m.

c) Electrical characteristics of MoS₂ transistor with L= 4 μ m and W= 20 μ m. For this device, V_T=0.32 V, SS= 99 mV/dec, and μ =3.92 cm²/V·s.

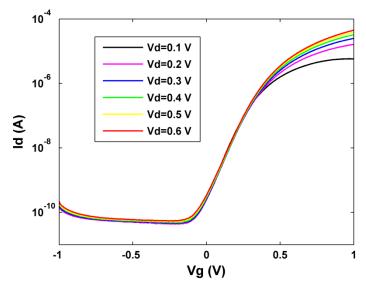


Fig. S4 Transfer characteristics of a MoS₂ transistor with L= 4 μ m and W= 20 μ m.

As a reference, the MoS_2 flakes were transferred to a SiO_2/Si substrate for transistor fabrication and characterization. Fig. S5 shows the transfer characteristics of a MoS_2 transistor with L= 2 µm and W= 100 µm. Fig. S6 shows the hysteresis behavior of the same device. All the electrical characterization was conducted at 300 K in a vacuum probe station.

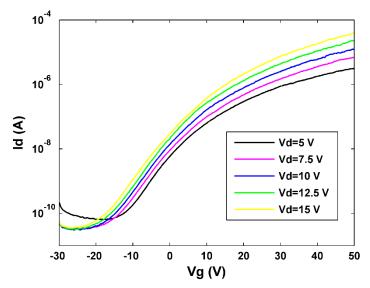


Fig. S5 Transfer characteristics of a 300 nm SiO₂ gated MoS₂ transistor with L= 2 μ m and W= 100 μ m.

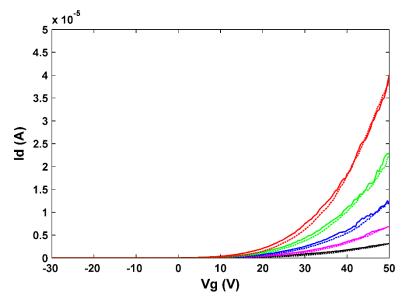


Fig. S6 Hysteresis characteristics of a 300 nm SiO₂ gated MoS₂ transistor with L= 2 μ m and W= 100 μ m.