Supplementary Information:

Graphene oxide monolayers as atomically thin seeding layers for

atomic layer deposition of metal oxides

Amirhasan Nourbakhsh,^{a, b,*} Christoph Adelmann, ^a Yi Song,^b Chang Seung Lee, ^c Inge Asselberghs,^a Cedric Huyghebaert,^a Simone Brizzi,^d Massimo Tallarida,^{d,‡} Dieter Schmeißer,^d Sven Van Elshocht,^a Marc Heyns,^a Jing Kong,^b Tomás Palacios^b and Stefan De Gendt^a

- Cambridge, Massachusetts 02139, United States
- ^c Material and Device Research Center, Samsung Advanced Institute of Technology, Giheung-gu, Yongin-si Gyeonggi-do, 446-712, South Korea

^d Brandenburgische Technische Universität, Angewandte Physik—Sensorik,

Konrad-Wachsmann-Allee 17, 03046 Cottbus, Germany

Experimental methods:

Graphene synthesis was carried out via CVD on Cu (foils and thin films) using methane as the carbon source. Graphene sheets were transferred to SiO₂/Si substrates by etching Cu with FeCl₃ solution to release graphene. Poly(methyl methacrylate) (PMMA) was used to support and transfer graphene to the target substrates. The PMMA layer was then removed by acetone followed by heating in a hydrogen/argon atmosphere at 350 °C. Repeated transfers were done to obtain double layer graphene stacks.

 O_2 plasma treatment was done in a parallel-plate 13.57 MHz rf plasma chamber. A plasma pulse was defined as a linear increase of the power from 0 to 100 W in 3.3 s followed by 1 s at 100 W (O_2 pressure in the chamber at 20 mTorr). To avoid the physical impact of the plasma due to the direct collision of charged particles and the graphene surface, samples were placed upside down in the afterglow discharge, 1 cm above the lower plate and ~2 cm below the center of discharge. The samples were annealed in an inert atmosphere at 200 °C for 2 h after each plasma exposure to desorb weakly bonded oxygen species.

^a imec, Kapeldreef 75, B-3001 Leuven, Belgium

^b Department of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, 77 Mass Avenue,

SRPES was performed using soft x-ray photons with photon energies of hv=450 and 640 eV for C 1s and O 1s, respectively, at the U49-2/PGM-2 beamline at the BESSY II synchrotron facility within the Helmholtz-Zentrum Berlin.

ALD Al_2O_3 was carried out with a Cambridge NanoTech ALD system using trimethylaluminum (TMA) and H_2O vapor at 150 °C with TMA being the first pulse. A single ALD cycle consisted of a 30 ms TMA exposure, 15 s N_2 purge, a 30 ms H_2O exposure, and another 15 s purge. The growth rate on GO was 0.95 Å/cycle, no significant difference was observed between different degrees of oxidation of GO.

DFT calculations were carried out using the self-consistent pseudopotential method as implemented in the SIESTA code^{1,2} with the generalized gradient approximation and the Perdew–Burke–Ernzerhof exchange–correlation functional. Atomic geometries are relaxed with forces <0.02 eV/ Å and stresses <0.05 GPa. We employed a 3D unit cell in which SLG is isolated by a 15 Å vacuum, large enough to ensure negligible interaction between functionalized graphene and its periodic images.

Leakage current characteristics:

Figure S1(a) compares the leakage currents of the two graphene-Al₂O₃-metal (GIM) capacitors described in Figure 4(a) where one has a GO ALD seeding layer (as explained in the main text), and the other is non-oxidized (pristine) graphene. A 10-nm layer of Al₂O₃ was deposited by ALD on both samples. The GO/Al₂O₃ devices showed low leakage currents with an oxide breakdown voltage $V_{br} \approx 5$ V. As expected for the case of graphene/Al₂O₃, the leakage current was many orders of magnitudes larger indicating the very poor quality of the deposited Al₂O₃ dielectric. This can be attributed to the relatively inert pristine graphene surface that prevents nucleation during ALD. Nucleation can only occur at defect sites, rather than over the whole graphene surface. This can be seen in the AFM image of Figure S1(b), which shows the non-uniform deposition of the Al₂O₃ film and a large number of pinholes. Some of these pinholes penetrate the whole film creating leakage paths. These results are similar to those previously reported by Wang et al.³

Figure S1. (a) Leakage current characteristics of GIM capacitors with GO/Al_2O_3 and graphene/ Al_2O_3 . (b) AFM images of ~10 nm thick Al_2O_3 deposited on graphene.

In this work ALD of Al₂O₃, which has a very efficient and self-limiting surface reaction, was developed as a representative model for the family of commonly used dielectric metal oxides MO_x , (e.g., M = Al, Hf, Zr). The main driving force for efficient reaction of the metal precursor with the surface is the formation of a strong metal-oxygen bond. The oxygen functionalized graphene surface can be expected to allow seeding of other metal oxides by the same ALD chemistry. An interesting example is HfO₂ which has higher dielectric constant than Al₂O₃ and is widely used in CMOS technology. Figure S2(a) shows an AFM image of a HfO₂ film deposited on GO (6 O₂ pulse), using 100 ALD cycles at 250 °C, where each cycle consisted of a 100 ms tetrakis(ethylmethylamino)hafnium (TEMAH) exposure, 15 s N₂ purge, a 20 ms H₂O exposure, and another 15 s purge. Figure S2(a) compares leakage current characteristics of GIM capacitors with Al₂O₃ and HfO₂ dielectric films. The HfO₂ GIM has a relatively high leakage current at voltages greater than 1 V and smaller V_{br} than the Al₂O₃ GIM (3.9 vs 5 V). The AFM image in Figure S2(b) shows that a HfO_2 film was uniformly deposited on GO to form a closed film. These results are in agreement with reports on conventional Al₂O₃ and HfO₂ metal-insulatormetal (MIM) capacitors.⁴ The higher leakage current in the HfO₂ device can be attributed to the relatively smaller band gap of HfO₂ as compared to Al₂O₃ which results in smaller band offset energies between the graphene electrode and dielectric.

Figure S2. (a) Leakage current characteristics of GIM capacitors with GO/Al_2O_3 and GO/HfO_2 . (b) AFM images of ~10 nm thick HfO_2 deposited on fully oxidized GO (6 O_2 plasma pulses).

References:

- 1 P. Ordejon, E. Artacho and J. M. Soler, Phys. Rev. B: Condens. Matter, 1996, 53, 10441-10444.
- 2 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon and D. Sanchez-Portal, J. Phys.: Condens. Matter, 2002, 14, 2745–2779.
- 3 X. Wang, S.M. Tabakman and H. Dai, J. Am. Chem. Soc., 2008, 130(26), 8152-8153
- 4 Park, K. Ryu, J. Jeong and J. Ahn, IEEE Electron Device Lett., 2013, 34, 120–122