Investigating the surface state of graphene quantum dots

Shoujun Zhu, Jieren Shao, Yubin Song, Xiaohuan Zhao, Jianglin Du, Lei Wang, Haiyu Wang, Kai Zhang, Junhu Zhang, Bai Yang*

Table of contents in Electronic supplementary information:

- 1. Figure S1.The height distribution of GQDs determined by AFM image.
- 2. Figure S2. a) The FT-IR spectra of GQDs, b-d) XPS analysis of GQDs.
- 3. Figure S3. The possible chemical structure of GQDs.
- 4. Figure S4. The solvation effect of GQDs in organic solutions and water.
- 5. Figure S5. The excited behaviors of GQDs. a) The average PL lifetime of bare GQDs at the different probed wavelength (375 nm excitation). b-d) Transient spectra of GQDs at 400, 470 and 530 nm excitation, respectively.
- 6. Figure S6. It was possible that the UV exposure can destroy the nonradiative structure while the percentage of the radiative process increased.
- 7. Table S1. The lifetime of the GQDs at 2000W UV light exposure (375 nm excitation and probed at 530 nm).
- 8. Figure S7. a-b) The excitation-dependent PL and PLE of GQDs at low concentration (0.05 mg/mL) aqueous solution. c-d) The excitation-dependent PL and PLE of GQDs at high concentration (2 mg/mL) aqueous solution.
- 9. Table S2. Other reaction conditions for GQDs.
- 10. Figure S8. The absorption, PL and PLE spectra of GQDs prepared by other conditions.
- 11. Figure S9. The XPS of GQDs prepared by other conditions.
- 12. Figure S10. The PL of GQDs and m-GQDs aqueous solution with the same concentration (0.05 mg/mL) and 460 nm excitation. The m-GQDs possessed higher green emission than that of GQDs, because the amide is the stronger green-PL center than –COOH.
- 13. Table S3. The lifetime of the m-GQDs at 375 nm excitation and probed at different wavelength sections.

Figure S1. The height distribution of GQDs determined by AFM image.

Figure S2. a)	The FT-IR spectra o	f GODs, b-d) XPS	analysis of GODs
ə		- (-,,, -	

Data note:	C-	C–O or	O=C or	Pyridine-	Pyrrole-	-NO ₂ or -	0
	C/C=C	C-N	СООН	like N	like N	NO ₃	
Peak Binding Energy / eV	284.73	286.15	288.22	399.68	401.86	406.62	532.05
GQDs (%)	49.52	5.92	9.95	1.76	0.58	0.23	32.04

Figure S3. The possible chemical structure of GQDs. Note: the pyrrole-like and pyridine-like nitrogen were possibly endowed in the acid cutting process, the NO₃ could also be NO₂ groups.

Figure S4. The solvation effect of GQDs in organic solutions (a)^[1] and water (b).

Figure S5. The excited behaviors of GQDs. a) The average PL lifetime of bare GQDs at the different probed wavelength (375 nm excitation, and the concentration of GQDs was 0.5 mg/mL). b-d) Transient spectra of GQDs at 400, 470 and 530 nm excitation, respectively.

Detected wavelength	τ_1 (ns)	Percent (%)	τ_2 (ns)	Percent (%)	$\tau_{average}(ns)$
410 nm	0.55	87.26	4.12	12.74	1.004818
440 nm	0.67	81.48	4.89	18.52	1.451544
470 nm	0.72	69.43	4.95	30.57	2.013111
500 nm	0.83	61.22	5.35	38.78	2.582856
530 nm	0.96	54.48	5.64	45.52	3.090336
560 nm	1.2	52.39	5.98	47.61	3.475758
590 nm	1.2	49.27	5.93	50.73	3.599529
620 nm	1.42	51.84	6.02	48.16	3.63536
650 nm	1.48	53.79	5.97	46.21	3.554829
680 nm	1.39	55.17	5.69	44.83	3.31769
710 nm	1.38	58.79	5.63	41.21	3.131425
740 nm	1.2	59.74	5.44	40.26	2.907024
770 nm	1.15	62.92	5.48	37.08	2.755564

Note: the lifetime in Figure S5a contained two nanosecond components.

Figure S6. It was possible that the UV exposure can destroy the nonradiative structure while the percentage of the radiative process increased (shown in Fig. 3c, τ_1 was the short lifetime for the nonradiative process while the τ_2 was the long lifetime for the nonradiative process).

Time of UV exposure	τ_1 (ns)	Percent (%)	τ_2 (ns)	Percent (%)	$\tau_{average}(ns)$
0	1.35	43	5.78	57	3.8751
1	1.44	43.29	6.03	56.71	4.042989
2	1.38	38.59	6	61.41	4.217142
3	1.39	37.14	5.99	62.86	4.28156
4	1.47	40.27	6.24	59.73	4.319121
5	1.49	38.75	6.28	61.25	4.423875
7.5	1.47	34.64	6.26	65.36	4.600744
10	1.54	35.91	6.37	64.09	4.635547
15	1.64	34.82	6.51	65.18	4.814266
20	1.63	31.13	6.49	68.87	4.977082
30	1.85	31.98	6.84	68.02	5.244198
60	2.09	28.48	7.09	71.52	5.666

Table S1. The lifetime of the GQDs at 2000W UV light exposure (375 nm excitation and probed at 530 nm, the concentration of GQDs was 0.01 mg/mL).

Figure S7. a-b) The excitation-dependent PL and PLE of GQDs at low concentration (0.05 mg/mL) aqueous solution. c-d) The excitation-dependent PL and PLE of GQDs at high concentration (2 mg/mL) aqueous solution.

Serial	Reaction materials	Reaction temperature / °C	Quantum yields / %	Lifetime /ns	PL peak / nm	Z- potential
1	Graphite powder	80	<1	3.58	525	-16.8
2	Graphite powder	100	<1	3.52	524	-18.5
3	Graphite powder	120	<1	3.09	535	-6.1
4	Graphite powder	140	<1	2.05	527	-13.7
5	Graphite powder	160	<1	2.49	526	-7.4
6	Nano-graphite powder	80	<1	3.54	524	-10.1
7	Nano-graphite powder	100	<1	3.26	524	-10.9
8	Nano-graphite powder	120	<1	2.86	523	-6.5
9	Graphene oxide	120	<1	2.68	535	-31.8
10	Highly oriented pyrolytic graphite	120	<1	2.64	524	-16.8
11	Single-wall carbon nanotube	120	<1	2.63	530	-15.9
12	Multi-wall carbon nanotube	120	<1	2.33	532	-19.9
13	Fullerene	120	<1	2.46	498	-15.3

Table S2. Other reaction conditions for GQDs.

Note: The reaction temperature was chosen at 120 °C. The lower temperature (80 °C and even 100 °C) lead to the incomplete reaction, while the higher temperature (140 °C and even 160 °C) resulted in the low yield of GQDs due to the over oxidation (most of the carbon resource was converted into the CO_2 and H_2O).

Figure S8. The absorption, PL and PLE spectra of GQDs prepared by other conditions. **Note:** The (c) was the data from Figure 2.

Figure S9. The XPS of GQDs prepared by other conditions.

Figure **S10.** The PL of GQDs and m-GQDs aqueous solution with the same concentration (0.05 mg/mL) and 460 nm excitation. The m-GQDs possessed higher green emission than that of GQDs, because the amide was the stronger green PL center than –COOH.

Detected wavelength	τ_1 (ns)	Percent (%)	τ_2 (ns)	Percent (%)	$\tau_{average}(ns)$
410 nm	1.6	66.38	5.98	33.62	3.072556
440 nm	1.89	67.38	8.34	32.62	3.99399
470 nm	2.07	56.12	9.48	43.88	5.321508
500 nm	2.13	38.19	9.48	61.81	6.673035
530 nm	2.14	29.76	9.32	70.24	7.183232
560 nm	2.07	28.76	9.09	71.24	7.071048
590 nm	2.26	33.08	9.06	66.92	6.81056
620 nm	1.91	34.73	8.5	65.27	6.211293
650 nm	1.88	39.86	8.36	60.14	5.777072
680 nm	1.55	42.6	7.83	57.4	5.15472
710 nm	1.38	46.68	7.64	53.32	4.717832
740 nm	1.23	51.54	7.5	48.46	4.268442
770 nm	1.02	51.57	6.53	48.43	3.688493

Table S3. The lifetime of the m-GQDs at 375 nm excitation and probed at different wavelength sections (375 nm excitation, the concentration of m-GQDs was 0.05 mg/mL).

[1] S. Zhu, L. Wang, B. Li, Y. Song, X. Zhao, G. Zhang, S. Zhang, S. Lu, J. Zhang, H. Wang, H. Sun, B. Yang, *Carbon* **2014**, *77*, 462-472.