Supporting Information

Au-nanocrystals-decorated δ -MnO₂ as efficient catalytic cathode for

high-performance Li–O₂ batteries

Shuangyu Liu,^{ab} Guoqing Wang,^a Fangfang Tu,^a Jian Xie,^{*ac} Hui Ying Yang,^b Shichao Zhang,^d

Tiejun Zhu,^a Gaoshao Cao^c and Xinbing Zhao^{ac}

- ^a State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ^b Pillar of Engineering Product Development, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682, Singapore
- ^c Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, China
- ^d School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

^{*}E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87952181

Fig. S1 (a) XPS survey of Au/ δ -MnO₂ on graphene-coated Ni foam, (b) Mn2p XPS, (c) O1s XPS, and (d) Au4f XPS.

XPS survey in Fig. S1a reveals the expected elements of Au/ δ -MnO₂ on the graphene-coated Ni foam. In Fig. S1b, two bands at 641.8 and 653.4 eV correspond to binding energy of Mn2p_{3/2} and Mn2p_{1/2} of MnO₂.¹ In Fig. S1c, two bands located at 529.8 and 531.6 eV are related to O1s binding energy in anhydrous (Mn-O-Mn) and hydrated (Mn-O-H) manganese oxides.² In Fig. S1d, two peaks at 84.0 and 87.8 eV correspond to binding energy of Au4f_{7/2} and Au4f_{5/2} of Au.³

Fig. S3 (a) Nitrogen adsorption/desorption isotherms and (b) pore size distribution of Au/ δ -MnO₂

on graphene-coated Ni foam.

Fig. S4 Cycling performance of the Li–O₂ battery using δ-MnO₂ catalyst at 800 mA g⁻¹ between 2

and 4.5 V without limiting the capacity.

Fig. S5 EIS of Li–O₂ battery with Au/ δ -MnO₂ catalyst at different charge and discharge states. The inset gives the equivalent circuit for fitting the plots.

In the equivalent circuit of Fig. S5, R_e represents electrolyte and ohm resistance, R_f and Q_1 represent surface film resistance and the relax capacitance, R_{ct} and Q_2 represent the charge transfer resistance and the double layer capacitance, and Z_w is the oxygen diffusion resistance. The fitting results are summarized in Table S1.

Table S1	Fitting results	s using the e	equivalent	circuit.
----------	-----------------	---------------	------------	----------

Sample	R _e	$R_{ m f}$	Q_1		$R_{\rm ct}$	Q_2	
	$[\Omega]$	$[\Omega]$	<i>Y</i> [F]	п	$[\Omega]$	<i>Y</i> [F]	п
Initial	19.4	120.8	2.2×10-3	0.44	140.8	1.1×10 ⁻⁵	0.75
After discharge	30.0	150.2	6.1×10 ⁻⁴	0.39	437.2	7.6×10-6	0.90
After charge	31.9	84.2	2.4×10 ⁻³	0.56	175.3	4.4×10 ⁻⁶	0.80

Sample/electrode preparation method	Current density	Terminal voltage [V]	Charge/ discharge mode	Specific capacity [mAh g _{total catalyst} ⁻¹]	Cycle number	Reference
Au/ð-MnO2 Direct growth and binder free	0.2 mA cm ⁻ ² /400 g _{total catalyst} ⁻	2.5-4.1/2.1-4.3	Capacity limited	500	100/165	This work
	0.4 mA cm ⁻ ² /800 g _{total catalyst} ⁻	2.0-4.5	Capacity unlimited	3012 (50th cycle)	50	This work
porous Au free standing	500 mA g _{total}	2.2–4.0	Capacity unlimited	~300 (100th cycle)	100	[4]
MnO _x /Pd paste coating	$100 \text{ mA} \underset{\text{catalyst}^{-1}}{\text{g}_{\text{total}}}$	2.0-4.15	Capacity limited	400	50	[5]
La _{0.75} Sr _{0.25} MnO ₃ paste coating	0.15 mA cm^{-2}	2.2-4.4	Capacity limited	667	124	[6]
α -MnO ₂ /G paste coating	0.09 mA cm^{-2}	2.8-4.0	Capacity limited	580	25	[7]
α -MnO ₂ /C paste coating	0.06 mA cm^{-2}	2.2-4.3	Capacity limited	500	60	[8]

Table S2 Summary of electrochemical performance of Li–O₂ batteries with manganese or noble metal based catalysts.

References

- L. Trahey, N. K. Karan, M. K. Y. Chan, J. Lu, Y. Ren, J. Greeley, M. Balasubramanian, A. K. Burrell, L. A. Curtiss and M. M. Thackeray, *Adv. Energy Mater.*, 2013, 3, 75–84.
- 2 M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 2004, 16, 3184-3190.
- 3 L. Caprile, A. Cossaro, E. Falletta, C. D. Pina, O. Cavalleri, R. Rolandi, S. Terreni, R. Ferrando, M. Rossi, L. Floreano and M. Canepa, *Nanoscale*, 2012, 4, 7727–7734.
- 4 Z. Q. Peng, S. A. Freunberger, Y. H. Chen and P. G. Bruce, Science, 2012, 337, 563-566.
- 5 D. Oh, J. F. Qi, Y. C. Lu, Y. Zhang, Y. Shao Horn and A. M. Belcher, *Nat. Commun.*, 2013, 4, 2756.
- 6 J. J. Xu, D. Xu, Z. L. Wang, H. G. Wang, L. L. Zhang and X. B. Zhang, Angew. Chem. Int. Ed., 2013, 52, 3887–3890.
- 7 Y. Cao, Z. K. Wei, J. He, J. Zhang, Q. Zhang, M. S. Zheng and Q. F. Dong, *Energy Environ. Sci.*, 2012, **5**, 9765–9768.
- 8 Y. Qin, J. Lu, P. Du, Z. H. Chen, Y. Ren, T. P. Wu, J. T. Miller, J. G. Wen, D. J. Miller, Z. C. Zhang and K. Amine, *Energy Environ. Sci.*, 2013, 6, 519–531.