Supporting Information

Design and Synthesis of Micron-Sized Spherical Aggregates Composed of

Hollow Fe₂O₃ Nanospheres for Use in Lithium-Ion Batteries

Jung Sang Cho, Young Jun Hong, Jong-Heun Lee and Yun Chan Kang*

Department of Materials Science and Engineering, Korea University,

Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea

*Corresponding author. Tel: +82-2-928-3584; Fax: +82-2-3290-3268

E-mail address: <u>yckang@korea.ac.kr</u>

This file includes:

- Experimal
- XRD patterns of the powders (a) post-treated at 500 °C under H₂/Ar mixed gas atmosphere and (b) subsequent heat-treated at 300 °C under air atmosphere.
- XPS spectra of the powders: (a) O 1s spectrum of the Fe-carbon composite powders posttreated at 500 °C under H₂/Ar mixed gas atmosphere, (b) O 1s spectrum, and (c) Fe 2p spectrum of the hollow Fe₂O₃ nanosphere aggregates subsequent heat treated at 300 °C under air atmosphere.
- Thermal-analysis of hollow Fe₂O₃ nanosphere aggregates.
- Morphology and phase analysis of solid Fe₂O₃ powders prepared by spray pyrolysis: (a) SEM image and (b) XRD pattern

- (a) N₂ gas adsorption and desorption isotherms and pore size distribution of (b) solid Fe₂O₃ powders, and (c) hollow Fe₂O₃ nanosphere aggregates.
- SEM images of (a) solid Fe₂O₃ powders and (b) hollow Fe₂O₃ nanosphere aggregates obtained after first cycle.
- SEM images of (a) solid Fe₂O₃ powders and (b) hollow Fe₂O₃ nanosphere aggregates obtained after 100 cycles.
- TG analysis of Fe-carbon composite powders post-treated at 500 °C under H₂/Ar mixed gas atmosphere.
- Cyclic voltammetry (CV) curves of solid Fe_2O_3 powders for the first 7 cycles at a scan rate of 0.1 mV s⁻¹.

Experimental

Synthesis of hollow Fe_2O_3 nanosphere aggregates and solid Fe_2O_3 powder: The hollow Fe₂O₃ nanosphere aggregates were prepared with a three-step process. The iron oxide-carbon composite powder was prepared with spray pyrolysis using a spray solution of iron nitrate enneahydrate [(Fe(NO₃)₃)·9H₂O] and sucrose. In the spray pyrolysis system used, droplets were generated with a 1.7 MHz ultrasonic spray generator consisting of six vibrators. The droplets were carried to a quartz reactor (length = 1200 mm, diameter = 50 mm) by a carrier gas of N₂ at a flow rate of 7 L·min⁻¹. The reactor temperature was maintained at 400 °C. The concentrations of iron nitrate enneahydrate and sucrose dissolved in distilled water to create the spray solution were 0.1 and 0.1 M, respectively. The first stage of the post-pyrolysis treatment involved heating the iron oxide-carbon composite powder to 500 °C under a 10% H₂/Ar reducing atmosphere for 10 h to produce the Fe-carbon composite powder. The second stage of the post-pyrolysis treatment involved heating the Fe-carbon composite powder to 300 °C under an oxidizing air atmosphere for 5 h to produce the hollow Fe₂O₃ nanosphere aggregates. For comparison purposes, a solid Fe₂O₃ powder was prepared directly with spray pyrolysis using a spray solution containing only iron nitrate enneahydrate (air atmosphere, temperature = $500 \circ C$).

Characterizations: The microstructure of the powders was observed with field emission scanning electron microscopy (SEM, Hitachi, S-4800) and field emission transmission electron microscopy (TEM, JEOL, JEM-2100F). In addition, their crystal structure was evaluated with X-ray diffraction (XRD, X'Pert PRO MPD) using Cu K α radiation ($\lambda = 1.5418$ Å) at the Korea Basic Science Institute (Daegu). X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) with a focused monochromatic Al K α at 12 kV and 20 mA was used to analyze the composition of the specimens. The surface area of the powders was determined with the Brunauer–Emmett–Teller (BET) method, using N₂ as the adsorbate gas. Thermogravimetric analysis (TGA) were performed with a Pyris 1 TGA (Perkin Elmer, temperature range = 25–650 °C, heating rate = 10 °C min⁻¹, static air atmosphere).

Electrochemical Measurements: The electrochemical properties of the powders were analyzed by constructing 2032-type coin cells. The anode was prepared by mixing the active

material, carbon black, and polyacrylic acid (PAA) in a weight ratio of 7:2:1. Li metal and microporous polypropylene film were used as the counter electrode and separator, respectively. The electrolyte was created by dissolving 1 M of LiPF₆ in a mixture of fluoroethylene carbonate and dimethyl carbonate (FEC/DMC, 1:1 v/v). The discharge/charge characteristics of the samples were investigated by cycling over a potential range of 0.001–3 V at various current densities. Cyclic voltammograms were measured at a scan rate of 0.1 mV s⁻¹. The size of the Fe₂O₃ powders negative electrode was 1 cm × 1 cm and the mass loading was approximately 1.2 mg cm⁻².

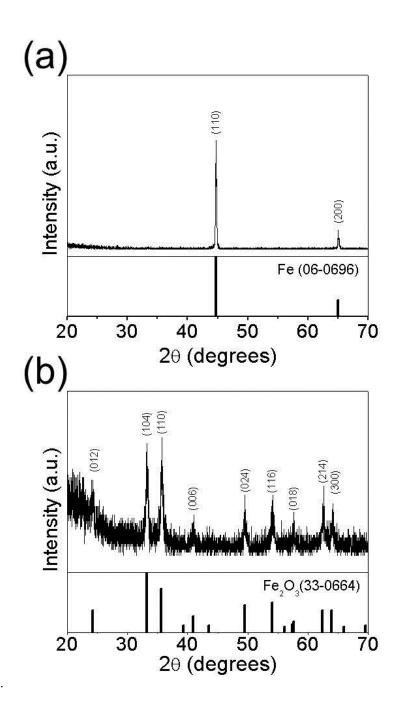
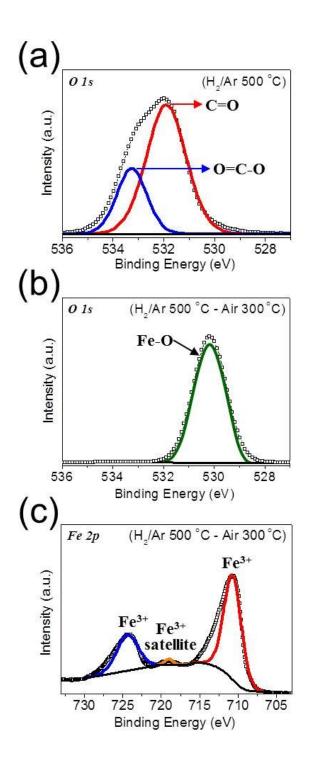



Figure S1. XRD patterns of the powders (a) post-treated at 500 °C under H_2/Ar mixed gas atmosphere and (b) subsequent heat-treated at 300 °C under air atmosphere.

Figure S2. XPS spectra of the powders: (a) O 1s spectrum of the Fe-carbon composite powders post-treated at 500 °C under H_2/Ar mixed gas atmosphere, (b) O 1s and (c) Fe 2p spectra of the hollow Fe₂O₃ nanosphere aggregates subsequent heat treated at 300 °C under air atmosphere.

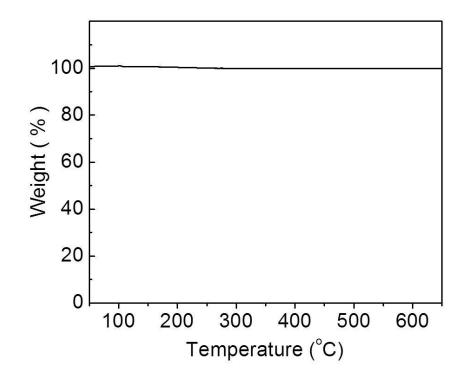


Figure S3. Thermogravimetric curve of the hollow Fe₂O₃ nanosphere aggregates.

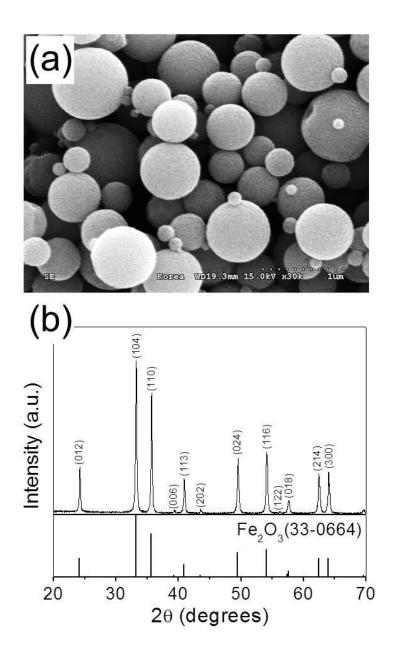
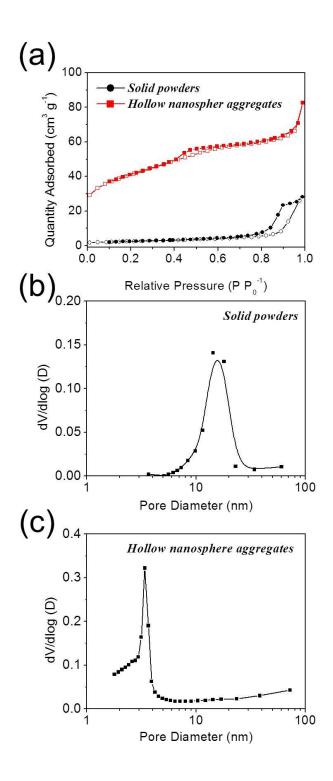



Figure S4. SEM image and XRD pattern of the solid Fe_2O_3 powders prepared by spray pyrolysis.

Figure S5. (a) N_2 gas adsorption and desorption isotherms and pore size distributions of (b) solid Fe₂O₃ powders, and (c) hollow Fe₂O₃ nanosphere aggregates.

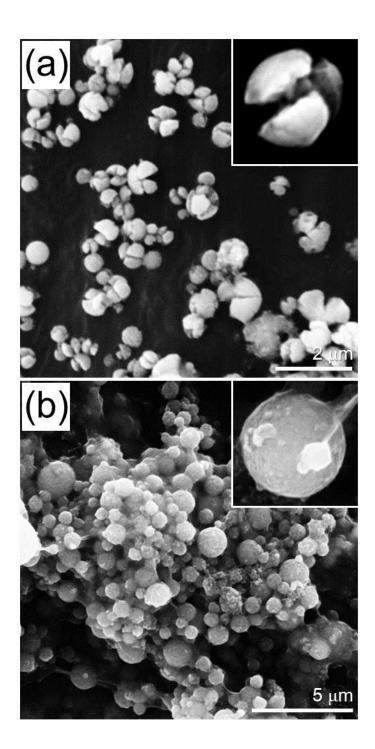


Figure S6. SEM images of (a) solid Fe_2O_3 powders and (b) hollow Fe_2O_3 nanosphere aggregates obtained after first cycle.

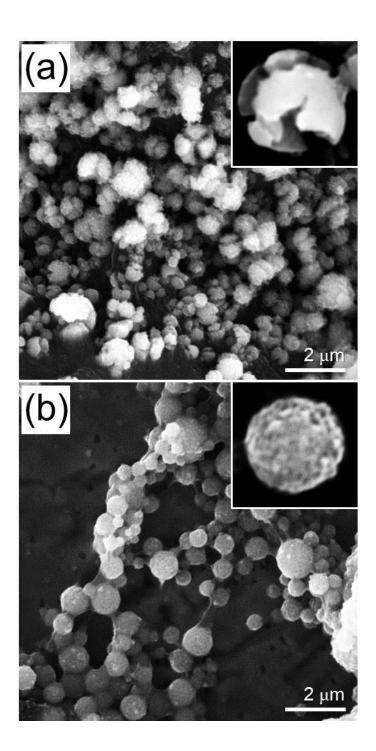


Figure S7. SEM images of (a) solid Fe_2O_3 powders and (b) hollow Fe_2O_3 nanosphere aggregates obtained after 100 cycles.

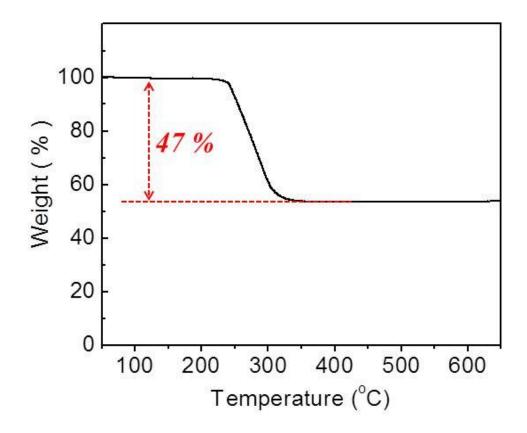


Figure S8. TG analysis of Fe-carbon composite powders post-treated at 500 $^{\circ}$ C under H₂/Ar mixed gas atmosphere.

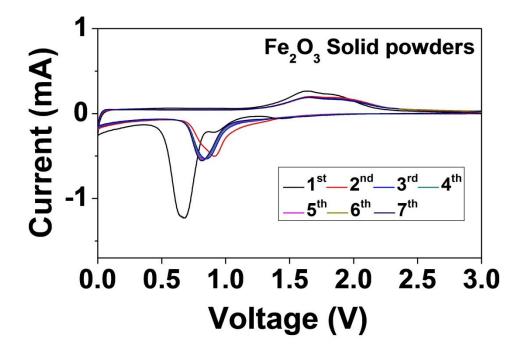


Fig. S9. Cyclic voltammetry (CV) curves of the solid Fe_2O_3 powders for the first 7 cycles at a scan rate of 0.1 mV s⁻¹.