SUPPORTING INFORMATION

Formation of Hollow Silica Nanospheres by Reverse Microemulsion

Chen-Han Lin,^a Jen-Hsuan Chang,^a Yi-Qi Yeh,^b Si-Han Wu,^a Yi-Hsin Liu,^a and Chung-Yuan Mou^a*

^a Center for Condensed Matter Sciences, and Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617 ^b National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076

List of Methods, Figures and Tables

Materials

Data Analysis for SAXS measurements

Figure S1 The zeta potential for HSN titration
Figure S2. Schematic design diagram for in situ SAXS measurements
Figure S3. SSN diameters from SAXS fitting (Primus/IGOR) and TEM
Figure S4. TEM images of SSNs at various reaction time
Figure S5. DLS of microemulsion in different oil phases
Figure S6. DLS of microemulsion and SSN with *n*-hexanol
Figure S7. DLS of microemulsion with 1:1 Triton X-100 to CA-520

Table S1. Elemental analysis of SSN and HSN

 Table S2. Mass transfer between SSN and HSN

Table S3. ²⁹Si NMR analysis from SSN and HSN

Table S4. The summary of the different approaches

Materials: Cyclohexane, *n*-hexane, *n*-octane, *n*-decane, *n*-dodecane, *n*-hexanol (98%), ammonium hydroxide (NH₄OH, 28-30 wt %), tetraethylorthosilicate (TEOS, 98%), 3-aminopropyltrimethoxysilane (APTS, 95%), polyoxyethylene (10) isooctylphenylether (Triton X-100) were purchased from Acros. Polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520) was purchased from Sigma Aldrich. Ultrapure deionized (D.I.) water was generated using a Millipore Milli-Q plus system. All reagents were used without additional purification.

Data Analysis for SAXS measurements:

The radii of gyration Rg of nanoparticles are evaluated using the Guinier approximation assuming that at very small angles ($q < 1.3 \times Rg$), the intensity is represented as

$$I(q) \approx I_0 \exp((-q^2 R_g^2/3))$$

For monodisperse solutions, I(q) can be related to Rg of the nanoparticles by the Guinier equation, which is represented by the Guinier plot.

The gyration radii of the nanospheres derived from Guinier approximation are evaluated using Primus program of ATSAS software package.¹ Data analysis is using unimodal or bimodal size distributions (Schulz size distributions) provided by the NCNR² based on the IGOR Pro software.

References:

1. P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch and D. I. Svergun, *J. Appl. Crystallogr.*, 2003, **36**, 1277-1282.

2. S. R. Kline, J. Appl. Crystallogr., 2006, 39, 895-900.

Figure S1. The zeta potential for HSN titration measurements at different pH varying from 3 to 10.

Figure S2. Schematic design diagram for *in situ* SAXS measurements at BL23A SWAXS end station in National Synchrotron Radiation Research Center (NSRRC, Taiwan).

Figure S3. The comparisons between the SSN diameters from SAXS fitting results (Primus and IGOR) and statistic measurements from time-resolved TEM images.

Figure S5. Hydrodynamic diameter distribution of microemulsion with different solvents as oil phase.

Figure S6 Hydrodynamic diameter distribution of (a) as-prepared w/o microemulsion formed with different volume of *n*-hexanol in the system and (b) hollow silica nanospheres synthesized with different volume of n-hexanol.

Figure S7. Hydrodynamic diameter distribution of as-prepared w/o microemulsion formed with an equal molar ratio of Triton X-100 to CA-520 (50%:50%). The inset is the hydrodynamic diameter distribution of hollow silica nanospheres synthesized with the same condition.

	С %	Н%	N %	O % (calculated)	SiO ₂ % (calculated)
SSN	3.638	1.895	0.460	12.4	81.6
HSN	4.134	1.927	0.935	12.7	80.3
Precipitates from supernatant	2.569	0.968	0.195	12.9	91.4

Table S1 Elemental analysis of solid silica nanospheres, hollow silica nanospheres and dried precipitates from etching solution

Table S2 Ca	alculations	of mass	transfer	of TEOS	and APTS	from	SSN to	HSN.
-------------	-------------	---------	----------	---------	----------	------	--------	------

	APS*	CA-520	H ₂ O	SiO ₂ (TEOS+APTMS)	
	(mmol/100g)	(mmol/100g)	(mmol/100g)	(mmol/100g)	
SSN wt. ratios	33	8	615	1338	
Mole ratio	1			40.5	
	100% APTMS			100% TEOS	
HNS wt. ratios	67	6	557	1315	
Mole ratio	1			19.6	
Portion from SSN	76.1% APTMS			35.8% TEOS	
Supernatant	14	7	267	1405	
precipitates wt. ratios	14	/	207	1495	
Mole ratio	1			107	
Portion from SSN	23.9% APTMS			64.2% TEOS	

* APS: 3-aminopropylsilyl group

Table S3. The solid state NMR area percentage of different kinds of silane	
structure in different treatment stages	

Si NMR	Q ⁴ (%)	$Q^{3}(\%)$	Q ² (%)	T (%)	Summation (%)	
	Si(OSi) ₄	Si(OSi) ₃ (OH) ₁	Si(OSi) ₂ (OH) ₂			
Before water	59 72	20.50	7 41	4 27	100	
washing (SSNs)	38.75	29.39	7.41	4.27	100	
After water	60.47	27 50	5 4 3	6 5 1	100	
washing (HSNs)	00.47	21.39	5.45	0.51	100	

Table S4TEM. The summary of the different approaches to investigate the size of HSNs

	C	omposition of reverse	Diameter of HSNs				
	Organic solvent (g)	surfactant CA-520(ml)/ TritonX-100(g)	Co-surfactant n-hexanol(µL)	water (µL)	Diameter (nm)	Standard deviation	
	n-hexane(30.29)	3.26/0	2500	700	42.4	3.9	
6 - 1 4 66 4	n-octane(40.24)	3.26/0	2500	700	50.6	5.6	
Solvent effect	n-decane(50.1)	3.26/0	2500	700	59.7	5.4	
	n-dodecane(60)	3.26/0	2500	700	70.5	7.4	
Co-surfactant effect	cyclohexane*	0/5	1000	350	67.2	10.7	
	cyclohexane*	0/5	3000	350	93.5	10.1	
	cyclohexane*	0/5	5000	350	125	18.6	
	cyclohexane*	0/5	7000	350	175	17.9	
The different ratio of CA-520 to Triton X-100	cyclohexane*	3.26/0	0	350	22.9	2.2	
	cyclohexane*	2.45/1.25	1000	350	38.4	3.9	
	cyclohexane*	1.63/2.5	2000	350	53.4	11.7	
	cyclohexane*	0.82/3.75	3000	350	87.0	18.6	
	cyclohexane*	0/5	4000	350	138.7	18.1	
*: Weight of cyclohexane is 14.83 gram							