Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Amphiphilic Fullerenes/ZnO Hybrids as Cathode Buffer Layer to Improve Charge Selectivity of Inverted Polymer Solar Cells

Ting Hu^{*a*}, Lie Chen^{*a,b*}, Kai Yuan^{*a*}, Yiwang Chen^{**a,b*}

^aCollege of Chemistry/Institute of Polymers, Nanchang University, 999 Xuefu

Avenue, Nanchang 330031, China

^bJiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China

*Corresponding author. Tel.: +86 791 83968703; fax: +86 791 83969561. E-mail: ywchen@ncu.edu.cn (Y. Chen).

Figure S1.¹HNMR spectrum of C60-PEG and the inset is the molecular structure of C60-PEG.

Figure S2. TEM images of (a) ZnO, (b) ZnO/1%C60-PEG, (c) ZnO/3%C60-PEG and (d) ZnO/5%C60-PEG.

Figure S3. TEM images and the corresponding HRTEM images of (a, c) CdS and (b,d) CdS@3%C60-PEG. The inset of (c) and (d) is the SAED pattern of CdS and CdS@3%C60-PEG.

Figure S4. (a) UPS spectra and (b) UV–vis absorbance spectra (the inset is plots of $(\alpha hv)^2$ versus energy) of ZnO, ZnO/1%C60-PEG, ZnO/3%C60-PEG and ZnO/5%C60-PEG; (c) the corresponding energy level diagram of the components of the devices.

Buffer layer	Eg(UV-Vis)	HOMO(UPS)	LUMO(Eg)
ZnO	3.38	7.58	4.20
ZnO/1% C60-PEG	3.38	7.50	4.12
ZnO/3% C60-PEG	3.37	7.45	4.08
ZnO/5% C60-PEG	3.36	7.42	4.06

Table S1. Energy levels of ZnO, ZnO/1%C60-PEG, ZnO/3%C60-PEG andZnO/5%C60-PEG.

Devices	а	b	С	d	e
μ_{e} (cm ² V ⁻¹ s ⁻¹)	1.96×10 ⁻⁴	4.36×10 ⁻⁴	6.83×10 ⁻⁴	9.75×10 ⁻⁴	6.31×10 ⁻⁴

 Table S2.
 Electron mobility of (a)ZnO, (b)
 ZnO@0.1%C60-PEG, (c)

 ZnO@0.5%C60-PEG, (d)
 ZnO@1%C60-PEG, and (e)
 ZnO@5%C60-PEG.

Table S3. Electron mobility of (a)ZnO, (b) ZnO/1%C60-PEG, (c) ZnO/3%C60-PEG, and (d) ZnO/5%C60-PEG.

Devices	а	b	c	d
μ_{e} (cm ² V ⁻¹ s ⁻¹)	2.45×10 ⁻⁴	4.18×10-4	8.11×10 ⁻⁴	5.85×10-4

Figure S5. (a) XRD patterns of ZnO, ZnO@0.1%C60-PEG, ZnO@0.5%C60-PEG, ZnO@1%C60-PEG and ZnO@5%C60-PEG. (b) XRD patterns of ZnO, ZnO/1%C60-PEG, ZnO/3%C60-PEG and ZnO/5%C60-PEG.

Figure S6. (a) Optical transmission spectra of ITO, ZnO, ZnO@0.1%C60-PEG, ZnO@0.5%C60-PEG, ZnO@1%C60-PEG and ZnO@5%C60-PEG. (b) Optical transmission spectra of ITO, ZnO, ZnO/1%C60-PEG, ZnO/3%C60-PEG and ZnO/5%C60-PEG.

Figure S7. Performance of devices under simulated AM 1.5 G (100 mW·cm⁻²) illumination. (a) IPCE spectra and (b) J-V curve under dark of the devices ITO/cathode buffer layer/PTB7:PC₇₁BM/MoO₃/Ag.

Figure S8. Performance of devices under simulated AM 1.5 G (100 mW·cm⁻²) illumination. (a) IPCE spectra and (b) J-V curve under dark of the devices ITO/cathode buffer layer/PTB7:PC₇₁BM/MoO₃/Ag.

Figure S9. Measured water contact angle between a drop of deionized water on (a) ZnO, (b) ZnO@0.1%C60-PEG, (c) ZnO@0.5%C60-PEG, (d) ZnO@1%C60-PEG and (e) ZnO@5%C60-PEG.

Figure S10. Measured water contact angle between a drop of deionized water on (a) ZnO, (b) ZnO/1%C60-PEG, (c) ZnO/3%C60-PEG and (d) ZnO/5%C60-PEG.

Figure S11. Performance of devices under simulated AM 1.5 G (100 mW·cm⁻²) illumination. (a) Illuminated *J-V* characteristics, (b) IPCE spectra and (c) *J-V* curve under dark of the devices ITO/cathode buffer layer/P3HT:PC₆₁BM/MoO₃/Ag.

Figure S12. Performance of devices under simulated AM 1.5 G (100 mW·cm⁻²) illumination. (a) Illuminated *J-V* characteristics, (b) IPCE spectra and (c) *J-V* curve under dark of the devices ITO/cathode buffer layer/P3HT:PC₆₁BM/MoO₃/Ag.

Table S4. Photovoltaic parameters of the devices with ITO/cathode buffer layer/P3HT:PC₆₁BM/MoO₃/Ag structure. ^aAll data of devices had been tested from more than five substrates (20 chips) to ensure reproducibility. ^bThe ZnO was synthesized following the process reported by Heeger *et al.* ^cThe ZnO was synthesized following the process reported by Beek *et al.*

Deries	$J_{ m sc}$	$V_{ m oc}$	FF	PCE
Device	[mA cm ⁻²]	[V]	[%]	[%]
ZnO ^b	8.86±0.14	0.599±0.008	57.0±2.1	3.0±0.2
ZnO@0.1%C60-PEG	8.93±0.12	0.623±0.006	60.0±1.6	3.3±0.2
ZnO@0.5%C60-PEG	9.00±0.10	0.622 ± 0.004	62.0±1.3	3.5±0.1
ZnO@1%C60-PEG	9.29±0.11	0.623±0.005	64.3±1.1	3.7±0.1
ZnO@5%C60-PEG	8.91±0.13	0.624 ± 0.006	61.8±1.5	3.4±0.2
ZnO ^c	8.64±0.13	0.584 ± 0.007	57.8±1.4	2.9±0.1
ZnO/1%C60-PEG	8.96±0.14	0.588 ± 0.004	58.7±1.7	3.1±0.2
ZnO/3%C60-PEG	9.02±0.12	0.595±0.006	62.5±1.2	3.4±0.1
ZnO/5%C60-PEG	8.86±0.12	0.589 ± 0.003	61.4±1.6	3.2±0.1

Figure S13. Illuminated *J-V* curves of the devices with ITO/cathode buffer layer/active layer/MoO₃/Ag structure by using CdS and CdS@3%C60-PEG as cathode buffer layer.

Device ^a	Active Layer	$J_{ m sc}$	$V_{\rm oc}$	FF	PCE
		[mA cm ⁻²]	[V]	[%]	[%]
CdS	P3HT:PC ₆₁ B M	8.33±0.23	0.593±0.05	64.8±1.2	3.2±0.2
CdS@3% C60-PEG	P3HT:PC ₆₁ B M	9.22±0.20	0.597±0.04	66.2±1.4	3.6±0.1
CdS	PTB7:PC71BM	15.14±0.12	0.728±0.2	60.9±1.3	6.7±0.1
CdS@3% C60-PEG	PTB7:PC71BM	15.66±0.17	0.728±0.4	64.9±1.5	7.4±0.1

Table S5. Photovoltaic parameters of the devices with ITO/cathode buffer layer/active layer/MoO₃/Ag structure. ^aAll data of devices had been tested from more than five substrates (20 chips) to ensure reproducibility.

Figure S14. (a) Normalized efficiency decay of inverted devices with ZnO, ZnO@0.1%C60-PEG, ZnO@0.5%C60-PEG, ZnO@1%C60-PEG and ZnO@5%C60-PEG as cathode buffer layer. (b) Normalized efficiency decay of inverted devices with ZnO, ZnO/1%C60-PEG, ZnO/3%C60-PEG and ZnO/5%C60-PEG as cathode buffer layer.