Electr	onic Supple	ementary	Material	(ESI)) for Nan	oscale
This jo	ournal is ©	The Roya	I Society	of C	hemistry	2015

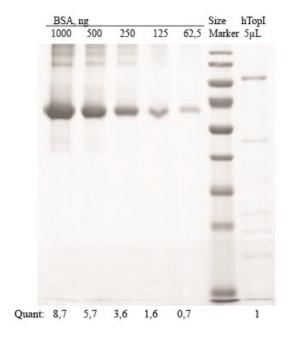
Supplementary Material

Real-Time	Investigation	of Human	Topoisomerase	I Reaction	Kinetics u	ısing an (Optical S	Sensor: A	Fast
Method for	r Drug Screen	ing and De	termination of A	Active Enzy	yme Conce	entration	s.		

Emil L. Kristoffersen^{1,2}, Line A. Jørgensen¹, Oskar Franch^{1,2}, Michael Etzerodt¹, Rikke Frøhlich¹, Lotte Bjergbæk¹, Magnus Stougaard^{3,2}, Yi-Ping Ho^{1,2}, Birgitta R. Knudsen^{1,2#}

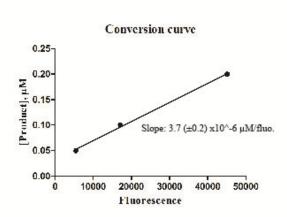
¹Department of Molecular Biology and Genetics, Aarhus University, Denmark

² Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark


³Department of Pathology, Aarhus University Hospital, Denmark

#Corresponding author. Contact information: brk@mbg.au.dk

keywords: human Topoisomerase I, fluorophore, real-time sensor, optical readout, enzyme kinetics


Figure S1. Determination of the concentration of total hTopI.

A comassie stained SDS-polyacrylamide gel containing a titration of bovine serum albumin (BSA) ranging from 1000-62.5 ng (lanes 1-5), a size marker (lane 6) and 5μ L of the purified hTopI fraction used for the experiments (lane 7). The relative intensity of the bands corresponding to the BSA or hTopI is shown in the gel below. These values were used to calculate the concentration of total hTopI (22 ng/ μ L).

Figure S2. Conversion of fluorescence to product concentration.

To generate a conversion curve that allows the fluorescence readout to be translated into a product concentration a known concentration of a synthetic product (a DNA sensor without the tri-nucleotide coupled quencher, (which is cleaved off by hTopI on the sensor substrate)), was incubated under standard reaction conditions. The fluorescence of the reaction product was measured in the qPCR machine, and plotted as the function of the concentration. The conversion constant at the specific reaction conditions was estimated to $3.7 \times 10^{-6} \,\mu\text{M/fluorescence}$ unit measured by making a linear least square fit to the data points.

