SUPPLEMENTARY INFORMATION

Wafer-scale growth of thickness-controllable MoS₂ films via solutionprocessing using a dimethylformamide/*n*-butylamine/2-aminoethanol solvent system

Jaehyun Yang,^a Yeahyun Gu,^a Eunha Lee,^b Hyangsook Lee,^b Sang Han Park,^c

Mann-Ho Cho,^c Yong Ho Kim,^d Yong-Hoon Kim,^{a,d} and Hyoungsub Kim*^a

^a School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon

440-746, Republic of Korea

^b Analytical Engineering Group, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Suwon 443-803, Republic of Korea

^c Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Republic of Korea

^d SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Republic of Korea

*E-mail : hsubkim@skku.edu

Fig. S1 Optical microscope image of the spin-coated film on the pristine SiO_2 surface using a 0.024 M (NH₄)₂MoS₄ solution prepared only with a DMF solvent. After spin-coating, the sample was pre-annealed at 150 °C for 10 min in air.

Fig. S2 (a) A series of spin-coating solutions prepared with various $(NH_4)_2MoS_4$ concentrations. (b) Thermogravimetric measurement result of the spin-coating solution with a $(NH_4)_2MoS_4$ concentration of 0.024 M. This demonstrates that most of the solvent can be removed at the pre-annealing temperature of 150 °C (dashed line) used in this experiment.

Fig. S3 Comparison of Raman spectra measured from the spin-coated sample using a 0.024 M (NH₄)₂MoS₄ solution after the first (red line) and the second annealings (black line).

Fig. S4 Surface topographic AFM images (insets) and cross-sectional height profiles showing the average thicknesses of the MoS_2 films synthesized from (a) 0.006 M and (b) 0.012 M spin-coating solutions.