SUPPLEMENTARY INFORMATION

Effect of trimetallization in thiolate-protected Au₂₄₋,Cu,Pd clusters

Sachil Sharma,^{*a*} Wataru Kurashige,^{*a*} Katsuyuki Nobusada^{*b,c*} and Yuichi Negishi^{**a,d,e*}

- ^a Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162–8601, Japan. Fax: +81–3–5261–4631; Tel: +81–3–5228–9145; E-mail: negishi@rs.kagu.tus.ac.jp
- ^b Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444–8585, Japan.
- ^c Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615–8520, Japan.

^d Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444–8585, Japan.

^e Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278–8510, Japan.

Initial metal ion ratios Au:Cu:Pd	Maximum number of Cu atoms in Au _{25-n} Cu _n (SC ₂ H ₄ Ph) ₁₈	Maximum number of Cu atoms in Au _{24-n} Cu _n Pd(SC ₂ H ₄ Ph) ₁₈		
23:1:1	5 ^a	2 ^{<i>a</i>}		
22:1:2	4 ^{<i>a</i>}	3 ^{<i>a</i>}		
21:1:3	3 ^{<i>a</i>}	2 ^{<i>a</i>}		
20:1:4	3 ^{<i>a</i>}	2 ^{<i>a</i>}		
19:1:5	4 ^{<i>a</i>}	2 ^{<i>a</i>}		
18:1:6	5 ^a	3 ^{<i>a</i>}		
22:2:1	5 ^b	3 ^b		
21:2:2	6 ^{<i>b</i>}	2 ^{<i>b</i>}		
20:2:3	4 ^{<i>b</i>}	2 ^{<i>b</i>}		
19:2:4	4 ^{<i>b</i>}	2 ^{<i>b</i>}		
18:2:5	6 ^b	3 ^b		
18:3:4	8 ^c	3 ^c		

Table S1. Maximum number of Cu atoms in $Au_{25-n}Cu_n(SC_2H_4Ph)_{18}$ bimetallic clusters and $Au_{24-n}Cu_nPd(SC_2H_4Ph)_{18}$ trimetallic clusters.

^{*a*} These values are from Figure S11. ^{*b*} These values are from Figure S12. ^{*c*} These values are from Figure S13.

Table S	52. Re	sults o	f DFT	calculations	for	All ₂₂ Cl	ıPd(SCH ₂)16	».
I abit k	<i>32.</i> IVC	suits o		calculations	101	Truzset	11 U (s۰

Cu site	Relative energy (eV)	HOMO-LUMO gap (eV)
Surface ^{<i>a</i>}	0.00	1.32
Staple ^{<i>a</i>}	0.21	1.33

^{*a*} These structures are shown in Scheme 1(b)(c).

Figure S1. Optical absorption spectrum of a product (red curve), which was obtained with a HAuCl₄:Cu(C₅H₇O₂)₂:PdCl₂·2NaCl concentration ratio of 23:1:1. The optical absorption spectra of Au₂₅(SC₁₂H₂₅)₁₈, ¹Au_{~24}Cu_{~1}(SC₁₂H₂₅)₁₈, which was reported in this study, and Au₂₄Pd(SC₁₂H₂₅)₁₈² are also shown for comparison purposes.

Figure S2. TEM image and corresponding particle size distribution of a product, which was obtained with a HAuCl₄:Cu(C₅H₇O₂)₂:PdCl₂·2NaCl concentration ratio of 23:1:1.

Figure S3. Negative-ion MALDI mass spectrum of a product, which was obtained with a HAuCl₄:Cu($C_5H_7O_2$)₂:PdCl₂·2NaCl concentration ratio of 23:1:1. In this experiment, mass spectrum was observed with a fluence higher than that used for the observation of non-destructive mass spectra to confirm the absence of the larger clusters.

Figure S4. (a) Au 4f, (b) Cu 2p, and (c) Pd 3d X-ray photoelectron spectra of a product, which was obtained with a HAuCl₄:Cu($C_5H_7O_2$)₂:PdCl₂·2NaCl concentration ratio of 23:1:1.

Figure S5. Assignments of peaks (denoted by *) observed in the negative-ion ESI mass spectra of a mixture of $Au_{24-n}Cu_nPd(SC_{12}H_{25})_{18}$ and $Au_{25-n}Cu_n(SC_{12}H_{25})_{18}$ (a) following extraction and (b) after standing for 1 h at room temperature in toluene. The peaks (denoted by *) are attributed to the dianion of cluster dimers or the trianion of cluster trimers, which are sometimes observed in the ESI mass spectra.³ Only the number of the metal atoms and the charge states are shown for simplicity.

Figure S6. Isotope patterns of the peaks of (a) $[Au_{24}Pd(SC_{12}H_{25})_{18}]^{2^{-}}$ and (b) $[Au_{23}CuPd(SC_{12}H_{25})_{18}]^{2^{-}}$ observed in ESI mass spectrum of Figure 2(a) together with those of the calculation. Isotope patterns were calculated using "Isotope Pattern Simulator" software.

Figure S7. Negative-ion MALDI mass spectra of samples synthesized with various ratios of $[Cu(C_5H_7O_2)_2]$:[HAuCl₄]. The ratio of $[PdCl_2 \cdot 2NaCl]$ was fixed such that $[HAuCl_4]$: $[Cu(C_5H_7O_2)_2]$:[PdCl₂·2NaCl] = *x*:*y*:1, where x + y = 24 (Table 1).

Figure S8. Negative-ion MALDI mass spectra of samples synthesized with various ratios of $[PdCl_2 \cdot 2NaCl]:[HAuCl_4]$. The ratio of $[Cu(C_5H_7O_2)_2]$ was fixed such that $[HAuCl_4]:[Cu(C_5H_7O_2)_2]:[PdCl_2 \cdot 2NaCl] = x:1:z$, where x + z = 24 (Table 1).

Figure S9. Negative-ion MALDI mass spectra of samples synthesized with various ratios of $[PdCl_2 \cdot 2NaCl]$: [HAuCl_4]. The ratio of $[Cu(C_5H_7O_2)_2]$ was fixed such that $[HAuCl_4]$: $[Cu(C_5H_7O_2)_2]$: $[PdCl_2 \cdot 2NaCl] = x:2:z$, where x + z = 23 (Table 1).

Figure S10. Negative-ion MALDI mass spectra of samples synthesized with various ratios of $[PdCl_2 \cdot 2NaCl]$: [HAuCl_4]. The ratio of $[Cu(C_5H_7O_2)_2]$ was fixed such that $[HAuCl_4]$: $[Cu(C_5H_7O_2)_2]$: $[PdCl_2 \cdot 2NaCl] = x:3:z$, where x + z = 22 (Table 1).

Figure S11. Negative-ion MALDI mass spectra of samples synthesized with various ratios of $[PdCl_2 \cdot 2NaCl]$: $[HAuCl_4]$ for 25-metal atom clusters protected by phenylethanethiolate (a mixture of $Au_{25-n}Cu_n(SC_2H_4Ph)_{18}$ and $Au_{24-n}Cu_nPd(SC_2H_4Ph)_{18}$). The ratio of $[Cu(C_5H_7O_2)_2]$ was fixed such that $[HAuCl_4]$: $[Cu(C_5H_7O_2)_2]$: $[PdCl_2 \cdot 2NaCl] = x:1:z$, where x + z = 24 (Table S1).

Figure S12. Negative-ion MALDI mass spectra of samples synthesized with various ratios of $[PdCl_2 \cdot 2NaCl]$: $[HAuCl_4]$ for 25-metal atom clusters protected by phenylethanethiolate (a mixture of $Au_{25-n}Cu_n(SC_2H_4Ph)_{18}$ and $Au_{24-n}Cu_nPd(SC_2H_4Ph)_{18}$). The ratio of $[Cu(C_5H_7O_2)_2]$ was fixed such that $[HAuCl_4]$: $[Cu(C_5H_7O_2)_2]$: $[PdCl_2 \cdot 2NaCl] = x:2:z$, where x + z = 23 (Table S1).

Figure S13. Negative-ion MALDI mass spectrum of sample synthesized from a mixture of $Au_{25-n}Cu_n(SC_2H_4Ph)_{18}$ and $Au_{24-n}Cu_nPd(SC_2H_4Ph)_{18}$ with $[HAuCl_4]:[Cu(C_5H_7O_2)_2]:[PdCl_2 \cdot 2NaCl] = 18:3:4$ (Table S1).

Figure S14. Correlation between the number of Cu atoms in clusters and the relative ion intensity in the mass spectra for Au_{25-n}Cu_n(SC₂H₄Ph)₁₈ and Au_{24-n}Cu_nPd(SC₂H₄Ph)₁₈ synthesized with various ratios of [PdCl₂·2NaCl]:[HAuCl₄]. The ratio of [Cu(C₅H₇O₂)₂] was fixed such that [HAuCl₄]:[Cu(C₅H₇O₂)₂]:[PdCl₂·2NaCl] was (a) *x*:1:*z*, where x + z = 24 (Figure S11), or (b) *x*:2:*z*, where x + z = 23 (Figure S12). The red lines indicate the maximum number of Cu atoms in the cluster determined in a series of experiments.

Figure S15. (a) Anatomy of 25 metal atom cluster highlighting three kinds of bond. (b)–(d) Histograms of the intermetallic bond length in $[Au_{25}(SCH_3)_{18}]^-$, $[Au_{24}Cu(SCH_3)_{18}]^-$, $[Au_{24}Pd(SCH_3)_{18}]^0$, and $[Au_{23}CuPd(SCH_3)_{18}]^0$ in which one Au atom on the surface of $[Au_{24}Pd(SCH_3)_{18}]^0$ is replaced with Cu (Scheme 1(c)); (b) M_{cent.}–M_{surf.}–(c) M_{surf.}–M_{surf.} and (d) M_{surf.}–M_{stap.}.

References

- 1. Y. Negishi, N. K. Chaki, Y. Shichibu, R. L. Whetten and T. Tsukuda, J. Am. Chem. Soc., 2007, 129, 11322–11323.
- 2. Y. Negishi, W. Kurashige, Y. Niihori, T. Iwasa and K. Nobusada, *Phys. Chem. Chem. Phys.*, 2010, **12**, 6219–6225.
- 3. W. Kurashige, S. Yamazoe, M. Yamaguchi, K. Nishido, K. Nobusada, T. Tsukuda and Y. Negishi, *J. Phys. Chem. Lett.*, 2014, **5**, 2072–2076.