Supporting Information

All solution processed PbS quantum dot solar modules

Jihoon Jang,‡^a Hyung Cheoul Shim,‡^a Yeonkyeong Ju,^b Junghoon Song,^{ac} Hyejin Ahn,^a

Jong-Su Yu,^b Sun-Woo Kwak,^b Taikmin Lee,^b Inyoung Kim,^{*b} and Sohee Jeong^{*ad}

^{*a*} Nanomechanical Systems Research Division, KIMM (Korea Institute of Machinery and Materials), Daejeon 305-343, Republic of Korea.

^b Advanced Manufacturing Systems Division, KIMM (Korea Institute of Machinery and Materials), Daejeon 305-343, Republic of Korea.

^c Graduate School of Nanoscience and Technology, KAIST (Korea Advanced Institute of Science and Technology), Daejeon 305-701, Republic of Korea

^d Department of Nano Mechatronics, UST (Korea University of Science and Technology), Daejeon, 305-350, Republic of Korea

‡ These authors contributed equally to this work.

E-mail: sjeong@kimm.re.kr, ikim@kimm.re.kr

Fig. S1 Absorption spectrum of PbS QD used in this study. Inset shows a TEM image

(scale bar is 10 nm).

Fig. S2 Picture of the PbS QD film on ITO glass (5 cm x 5 cm) after direct deposition of PEDOT:PSS

Sweep direction	$V_{oc}\left(\mathbf{V} ight)$	J_{sc} (mA cm ⁻²)	Fill Factor (%)	PCE (%)	
Reverse	0.58	7.93	47.92	2.19	
Forward	0.57	7.82	47.48	2.12	

Table S1. J-V characteristics for the best efficiency cell with the active area of 1 cm².

* Reverse direction: $V_{oc} (0.6 \text{ V}) \rightarrow I_{sc} (0.0 \text{ V})$

* Forward direction: $I_{sc} (0.0 \text{ V}) \rightarrow V_{oc} (0.6 \text{ V})$

Fig. S3 Steady-state PCE ranged between $2.1 \sim 2.2$ % monitored for 75 sec.

Table S2. Comparison of performance parameters between solar cells fabricated from the different absorbing layer that have been coated by bar coating on the glass/ITO/TiO₂ substrate.

Absorbing layer	$V_{oc}\left(\mathrm{V} ight)$	J_{sc} (mA cm ⁻²)	Fill Factor (%)	PCE (%)	
PbS QD	0.58	7.93	47.92	2.19	
РСВМ	0.58	4.12	51	1.21	

Compound	References	Cost per mass (\$ g ⁻¹)	Remarks			
MoO ₃	1	51.11	MoO ₃ Target ($t = 3 \text{ mm}, R = 25 \text{ mm}$)			
РЗНТ	2	8.64	-			

Table S3. Survey of materials for buffer layer of QD solar cells

Table S4. Calculated material cost-per-Watt (W^{-1}) and cost-per-active area (m^{-2}) for PbS QD solar cells incorporating MoO₃ or P3HT. It considers only the cost of buffer layer materials.

Buffer layer material	References	Active area (cm ²)	Thickness (nm)	Total mass (μg)	Total cost (Cent)	Output Watt (mW)	Cost per Watt (\$ W ⁻¹)	Cost per active area (\$ m ⁻²)	Density (g cm ⁻³)
MoO3	3	0.0400	10	0.23	0.0012	0.027	0.4436	2.4490	
	4	0.0490				0.015	0.7854	2.4490	
	5	0.0300		0.14	0.0007	0.006	1.0918	2.3333	4.69
	6	0.0121	5	0.02	0.0001	0.002	0.5859	0.8264	
	7	0.0400		0.09	0.0005	0.005	0.9530	1.2500	
РЗНТ	Our devices	1.0000	30	3.30	0.0029	0.196	0.1483	0.2900	1.10

References

- 1 PRICE LIST of MoO₃ (Sputtering Target Manufacturing Co., LLC) with thickness of 3 mm, and diameter of 25 mm, http://www.sputtertarget.com/page3.html, (accessed August 2014).
- 2 T. P. Osedach, T. L. Andrewb and V. Bulović, Energy Environ. Sci., 2013, 6, 711.
- 3 A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian and E. H. Sargent, *Nat. Nanotech.*, 2012, 7, 577.
- 4 J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury and E. H. Sargent, *Nat. Mater.*, 2011, 10, 765.
- 5 J. Gao, C. L. Perkins, J. M. Luther, M. C. Hanna, H. Chen, O. E. Semonin, A. J. Nozik, R. J. Ellingson and M. C. Beard, *Nano Lett.*, 2011, 11, 3263.
- 6 P. R. Brown, Richard R. Lunt, N. Zhao, T. P. Osedach, D. D. Wanger, L. Chang, M. G. Bawendi and V. Bulović, *Nano Lett.*, 2011, 11, 2955.
- 7 A. Loiudice, A. Rizzo, G. Grancini, M. Biasiucci, M. R. Belviso, M. Corricelli, M. L. Curri, M. Striccoli, A. Agostiano, P. D. Cozzoli, A. Petrozza, G. Lanzanidh and G. Gigli, *Energy Environ. Sci.*, 2013, 6, 1565.