Electronic Supplementary Information

Controlled Preparation of Au/Ag/SnO₂ Core-Shell Nanoparticles Using a Photochemical Method and Applications in LSPR based Sensing

Na Zhou,^{a b} Chen Ye,^a Lakshminarayana Polavarapu^a and Qing-Hua Xu^{*a b}

^a Department of Chemistry, National University of Singapore, Singapore 117543 E-mail: <u>chmxqh@nus.edu.sg</u>.

^b National University of Singapore (Suzhou) Research Institute (NUSRI), Suzhou, Jiangsu, China 215123

Experimental Section

Chemicals and Materials

Hexadecyltrimethylammoniumbromide (CTAB) (98%), sodium borohydride (99%), gold(III) chloride trihydrate (HAuCl₄•3H₂O) (99.9%) and sodium stannate trihydrate (Na₂SnO₃•3H₂O)(95%) were purchased from Sigma-Aldrich. Silver nitrate (AgNO₃) and L-(+) -ascorbic acid were purchased from Alfa Aesar. De-ionized water was used in all the experiments.

Synthesis of Gold nanorods (Au NRs):

Au NRs were prepared by using a previously reported seed-mediated growth method.¹ The seed solution was first prepared by adding 250 μ L of 0.01 M HAuCl₄ to 10 mL of 0.1 M CTAB solution in a plastic tube. 0.6 mL of freshly prepared ice-cold 0.01 M NaBH₄ solution was quickly added and mixed by gentle shaking for 2 min. The resultant brownish yellow solution was kept at room temperature for at least 2 h before used as the seed solution. In the seed-mediated growth step, 2.0 mL of 0.01M HAuCl₄ and 0.27 mL of 0.01 M AgNO₃ were added into 40 mL of 0.1 M CTAB solution and mixed by gentle shaking. 0.8 mL of 1.0 M HCl, 0.32 mL of 0.1 M freshly prepared L- (+) -ascorbic acid solution, and 96 μ L of seed solution were then added into the mixture sequentially. The reaction mixture was left undisturbed at least 6 h for longitudinal overgrowth. Finally, CTAB capped Au NRs with longitudinal plasmon resonance band at 763 nm were obtained.

Preparation of Gold nanospheres (AuNSs):

20 nm CTAC capped AuNSs were prepared according to a previously reported three-step procedure.² Citrate-stabilized Au seeds with diameter of 3.5 nm were first prepared by the following steps. The mixture of sodium citrate (250 μ L, 0.01 M) and HAuCl₄ (50 μ L, 0.05M) was diluted with 9.4 mL of H₂O in a round bottom flask, followed by injection of ice-cold NaBH₄ (300 μ L, 0.1 M) and mixed by vigorously stirring for 2 min. The obtained solution was kept in room temperature for at least 3 h before use. Au NSs with a diameter of 8 nm was subsequently prepared. HAuCl₄ (45 μ L, 0.05 M) and freshly prepared L- (+) -ascorbic acid (50 μ L, 0.1M) were added into CTAC solution (9 mL, 0.08 M). After mixing, 1 mL of previously obtained Au seed (3.5 nm) was injected. The mixed solution was stirred for 10 min to grow AuNSs with a diameter of 8 nm. At last, the resultant 8 nm AuNSs were used as seeds for the growth of CTAC capped Au NSs. HAuCl₄ (225 μ L, 0.05 M) and L- (+) - ascorbic acid (250 μ L, 0.1M) were added into 45 mL of CTAC (0.08 M) and mixed by gently shaking. 5 mL of 8 nm Au NSs solution was then added into the mixture under vigorously stirring, which was continued for 10 min. The mixture solution was kept at room temperature for 3 h before use. Finally, Au NSs with averaged diameters of 20 nm were obtained.

Figure S1 (a) XRD pattern of AuNR/SnO₂. (b) HRTEM image of AuNR/SnO₂, which was focused on the SnO₂ shell.

Figure S2 UV-Vis extinction spectra of Au NR reacted with AgNO₃ under UV light irradiation.

Figure S3 (a) TEM image of AuNR/SiO₂; (b) UV-vis extinction spectra of the AuNR/SiO₂ and AgNO₃ mixture solution under irradiation by UV light.

Figure S4 UV-vis extinction spectra of the AuNR/SnO₂ and AgNO₃ mixture solution without any light irradiation.

Figure S5 UV-vis extinction spectra of the mixture of Au/SnO₂ and AgNO₃ irradiation with UV light at intensity of 21μ W/cm² and 37 μ W/cm²

Figure S6 Extinction spectra of one Au/AgNR/SnO₂ sample measured right after preparation and after storage for two years.

Figure S7 Normalized extinction spectra of AuNR/SnO₂ (a), Au/AgNR/SnO₂(660nm) (b), Au/AgNR/SnO₂(688nm) (c), Au/AgNR/SnO₂(720nm) (d), Au/AgNR/SnO₂(733nm) (e), Au/AgNR/SnO₂(742nm) (f) and Au/AgNR/SnO₂(756nm) (g) in water-DEG liquid mixture solvent of varying volume ratios.

Reference:

- 1. B. Nikoobakht and M. A. El-Sayed, Chem. Mater., 2003, 15, 1957-1962.
- 2. X. Kou, Z. Sun, Z. Yang, H. Chen and J. Wang, Langmuir, 2009, 25, 1692-1698.