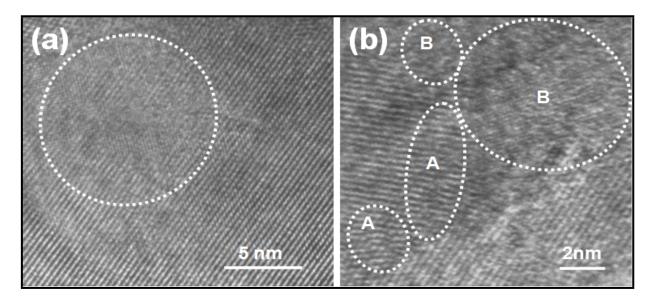
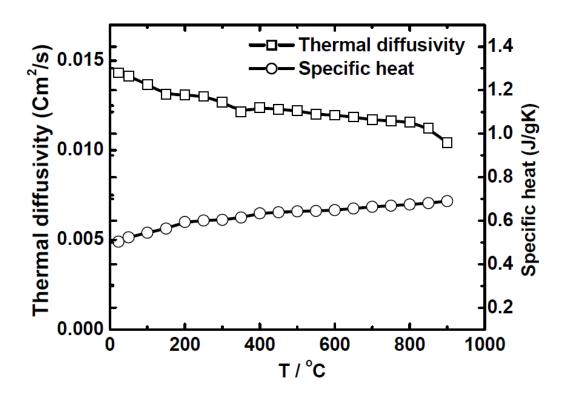
Electronic Supporting Information (ESI):

Role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys


Sivaiah Bathula,^{1,2} M. Jayasimhadri², Bhasker Gahtori¹, Niraj Kumar Singh¹, Kriti Tyagi^{1,3}, A. K. Srivastava¹ and Ajay Dhar^{1,*}

 ¹CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi -110012, India
²Department of Applied Physics, Delhi Technological University, Delhi, India
³Acdemy of Scientific and Innovative Research (AcSIR), CSIR-National Physical laboratory (NPL) Campus, New Delhi, India


This supporting information includes:

- 1. HRTEM analysis of nanostructured SiGe alloy
- 2. The temperature dependence of thermal conductivity (κ), calculated from the measured thermal diffusivity and specific heat capacity.
- 3. Temperature dependence electrical transport properties of nanostructured SiGe for different consecutive thermal cycles.

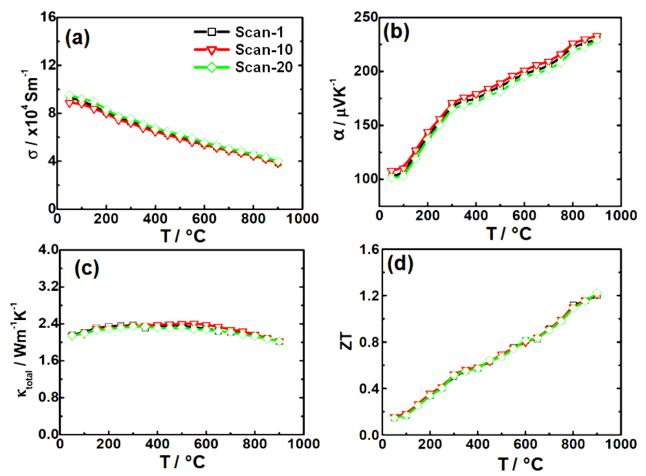

^{*}Corresponding author: <u>adhar@nplindia.org</u> Tel.: +91 11 4560 9456; Fax: +91 11 4560 9310

Figure S1: HRTEM atomic scale image of nanostructured $Si_{80}Ge_{20}$ alloy showing (a) region with amorphous phase in a crystalline lattice (white dot line encircled) (b) region (A) comprising of a series of dislocations (edge-type) and also region (B) showing a mushy microstructure of amorphous & crystalline phases.

Figure S2: Temperature dependence of thermal conductivity (κ), calculated from the measured thermal diffusivity and specific heat capacity.

Figure S3: *(Color online)* Temperature dependence electrical transport properties of nanostructured *SiGe* for different thermal cycles (a) Electrical conductivity (b) Seebeck coefficient (c) Thermal conductivity (d) ZT