Electronic Supplementary Information (ESI) for nanoscale This journal is © The Royal Society of Chemistry 2014

Supporting Information

Nanostructured porous manganese carbonate spheres with capacitive

effects on the high lithium storage capability

Wenpei Kang^{a,b}, Denis Yau Wai Yu^{a,c}, Wenyue Li^{d,a,b}, Zhenyu Zhang^{a,b}, Xia Yang^{a,b}, Tsz-Wai Ng^{a,b}, Rujia Zou^{a,b}, Yongbing Tang^{d,a*}, Wenjun Zhang^{a,b} and Chun-Sing Lee^{a,b*}

a Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong

Kong SAR, People's Republic of China.

b Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR,

People's Republic of China.

c School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, People's

Republic of China.

d Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese

Academy of Sciences, People's Republic of China.

E-mail: tangyb@siat.ac.cn; apcslee@cityu.edu.hk; Tel: +852-34427826

Fig. S1. SEM images of MnCO₃ obtained from (a, b) hydrothermal reaction; solvothermal reaction with (c) PVP and (d) acid ascorbate.

Fig. S2. Thermogravimetric measurement of p-MnCO₃ nanostructures. It indicates that MnCO₃ has a good thermal stability below 280°C.

Fig. S3. N₂ adsorption–desorption isotherms curves (left) and pore size distribution (right) for (a) p-MnCO₃, (b) MnCO₃-R3 and (c) MnCO₃-R4. BET analysis of p-MnCO₃ gives a specific surface area of 25.4 m² g⁻¹, a pore volume of 0.188 cm³ g⁻¹ and average pore diameter of 3.2 nm. In comparison, the micro-size solid particle (MnCO₃-R3) gives a specific surface area of 17.2 m² g⁻¹ and a pore volume of 0.09 cm³ g⁻¹ and average pore diameter of 3.7 nm. And the commercial sample (MnCO₃-R4) has BET areas of 11.3 m² g⁻¹ and pore volume of 0.023 cm³ g⁻¹.

Fig. S4. Rate capabilities of different MnCO₃ samples.

Fig. S5. CV curves for the symmetric supercapacitor with $MnCO_3$ - $MnCO_3$ electrodes at a scan rate of 50 mV s⁻¹.

Table S1. A summary of the lithium storage capabilities of as-prepared porous MnCO₃ sphere in comparison with other high-performance anode materials reported in the literature.

Material	Residual capacity	Current	Ref
	$(\mathbf{mAh} \mathbf{g}^{-1})$	(mA g ⁻¹) or	
		С	
MnCO ₃	1049/200th cycle 507/2000th cycle	1000 5000	This Work
Si/C	1160/1000th cycle	2100	<i>Nature Nanotech</i> , 2014, 9 ,187
Si-PANi	550/4000th cycle	6000	<i>Nature Commun</i> , 2013, 4 , 1943
Si-CNT	~1300/100th cycle	800	<i>Nano Energy</i> , 2013, 2 , 138
Ge	1246/200th cycle	1C	Chem. Mater., 2014, 26, 5683
Ge	993/600th cycle 680/300th cycle	1C 2C	Chem. Mater., 2014, 26, 2172
Ge	888/1100th cycle	C/2	Nano Lett., 2014, 14, 716
SnO ₂ -PPy	448/100th cycle	0.1C	Nano Energy, 2014, 6, 73
SnO _x /C	608/200th cycle	500	Adv. Mater., 2014, 26, 3943
Sn/C	1089/100th cycle 657/1000th cycle	0.2C 2C	ACS Nano, 2014, 8 , 1728

Table S2 A summary of the lithium storage capabilities of as-prepared porous MnCO₃ sphere in comparison with other oxysalt anode materials reported in the literature.

Material	Shape	Residual	Current	Ref
		capacity	$(\mathbf{mA} \mathbf{g}^{-1})$	
		$(\mathbf{mAh}\ \mathbf{g}^{-1})$	or C	
MnCO ₃	Porous sphere	1049/200th cycle 507/2000th cycle	1000 5000	This work
CoCO ₃ /GNS	cubes	744/100th cycle 680/100th cycle	200 500	<i>Nano Energy</i> , 2013, 2 , 276
CoCO ₃ – polypyrrole	urchin-like structure	811.2/100th cycle 559/100th cycle	1000 5000	<i>J. Mater. Chem. A</i> , 2013, 1 , 11200
CuC ₂ O ₄ xH ₂ O	Cylinder-like structure	970/100th cycle 809/100th cycle	200 500	<i>J. Power Sources</i> , 2013, 238 , 203
FeC ₂ O ₄	Elongated- shape	>400/75th cycle	2C	<i>Inorg. Chem.</i> , 2008, 47 , 10366
MnCO ₃	Rhombohedron	>466/25th cycle	C/4	<i>Electrochem. Commun.</i> 2007, 9 , 1744
CoC ₂ O ₄	Nanoribbon	<700/70th cycle	2C	<i>Chem. Mater.</i> , 2009, 21 , 1834
FeCO ₃	Cubes	812/120th cycle	1000	<i>J. Power Sources</i> , 2014, 253 , 251
FeCO ₃	Hollow Microspheres	710/200th cycle	200	ACS Appl. Mater. Interfaces, 2013, 5 , 11212