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Fig. S1. SEM images of MnCO3 obtained from (a, b) hydrothermal reaction; solvothermal reaction 

with (c) PVP and (d) acid ascorbate. 



Fig. S2. Thermogravimetric measurement of p-MnCO3 nanostructures. It indicates that MnCO3 has a 

good thermal stability below 280°C. 



Fig. S3. N2 adsorption–desorption isotherms curves (left) and pore size distribution (right) for (a) p-

MnCO3, (b) MnCO3-R3 and (c) MnCO3-R4. BET analysis of p-MnCO3 gives a specific surface area 

of 25.4 m2 g-1, a pore volume of 0.188 cm3 g-1 and average pore diameter of 3.2 nm. In comparison, 

the micro-size solid particle (MnCO3-R3) gives a specific surface area of 17.2 m2 g-1 and a pore 

volume of 0.09 cm3 g-1 and average pore diameter of 3.7 nm. And the commercial sample (MnCO3-

R4) has BET areas of 11.3 m2 g-1 and pore volume of 0.023 cm3 g-1. 



Fig. S4. Rate capabilities of different MnCO3 samples.



Fig. S5. CV curves for the symmetric supercapacitor with MnCO3-MnCO3 electrodes at a scan rate 

of 50 mV s-1.



Table S1. A summary of the lithium storage capabilities of as-prepared porous MnCO3 sphere in 

comparison with other high-performance anode materials reported in the literature.

Material Residual capacity 

(mAh g-1)

Current 

(mA g-1) or 

C

Ref

MnCO3
1049/200th cycle
507/2000th cycle

1000
5000

This Work

Si/C 1160/1000th cycle 2100 Nature Nanotech, 2014, 9,187

Si-PANi 550/4000th cycle 6000 Nature Commun, 2013, 4, 
1943

Si-CNT  ~1300/100th cycle 800 Nano Energy, 2013, 2, 138

Ge 1246/200th cycle 1C Chem. Mater., 2014, 26, 5683

Ge 993/600th cycle
680/300th cycle

1C
2C

Chem. Mater., 2014, 26, 2172

Ge 888/1100th cycle C/2 Nano Lett., 2014, 14, 716

SnO2-PPy 448/100th cycle 0.1C Nano Energy, 2014, 6, 73

SnOx /C 608/200th cycle 500 Adv. Mater., 2014, 26, 3943

Sn/C 1089/100th cycle
657/1000th cycle

0.2C
2C

ACS Nano, 2014, 8, 1728



Table S2 A summary of the lithium storage capabilities of as-prepared porous MnCO3 sphere in 

comparison with other oxysalt anode materials reported in the literature.

Material Shape Residual 

capacity 

(mAh g-1)

Current 

(mA g-1) 

or C

Ref

MnCO3
Porous sphere 1049/200th cycle

507/2000th cycle
1000
5000

This work

CoCO3/GNS cubes  744/100th cycle
 680/100th cycle

200
500

Nano Energy, 2013, 2, 
276

CoCO3–

polypyrrole

urchin-like 
structure

 811.2/100th 
cycle
559/100th cycle

1000
5000

J. Mater. Chem. A, 
2013, 1, 11200

CuC2O4xH2

O

Cylinder-like 
structure

970/100th cycle
809/100th cycle

200
500

J. Power Sources, 
2013, 238, 203

FeC2O4
Elongated-
shape

>400/75th cycle 2C Inorg. Chem., 2008, 
47, 10366

MnCO3
Rhombohedron >466/25th cycle C/4 Electrochem. Commun. 

2007, 9, 1744

CoC2O4
Nanoribbon <700/70th cycle 2C Chem. Mater., 2009, 

21, 1834

FeCO3
Cubes 812/120th cycle 1000 J. Power Sources, 

2014, 253, 251

FeCO3
Hollow 
Microspheres

710/200th cycle 200 ACS Appl. Mater. 
Interfaces, 2013, 5, 
11212


