Electronic Supplementary Information

Surface engineering on CeO₂ nanorods by chemical redox etching and their enhanced catalytic activity for CO oxidation

Wei Gao, ^a Zhiyun Zhang, ^a Jing Li, ^a Yuanyuan Ma*^a and Yongquan Qu*^{a,b}

^a Center for Applied Chemical Research, Frontier Institute of Science and Technology, and

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University,

Xi'an, China, 710049.

^b MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, China 710049

* To whom correspondence should be addressed. E-mail: yongquan@mail.xjtu.edu.cn.

Figure S1 Diameter distributions of (a) CeO_2 nanorods (8.5 ± 1.0 nm); (b) CeO_2 -NR-1 (7.4 ± 1.1 nm); (c) CeO_2 -NR-4 (6.5 ± 1.0 nm) and (d) CeO_2 -NR-8 (5.8 ± 1.1 nm).

Figure S2 Optical images of CeO_2 : the untreated nanorods, AA reduced samples and H_2O_2 reoxidized samples.

CeO2 nanorods CeO₂ NRs-1 CeO₂ NRs-4 CeO₂ NRs-8 *T*₅₀/ °C 230 213 198 218 *T*₉₀/ °C 292 282 267 247 *T*₉₉/ °C 327 325 308 286

 Table S1 Catalytic performance of as-synthesized ceria nanorods and etched ceria nanorods for

 CO oxidation

Preparation of ceria nanopaticles

Ceria nanoparticles were prepared in a simple calcining method. Briefly, 500 mg Ce(NO₃)₃· $6H_2O$ were calcined at a muffle furnace at 500 °C for 2h and the temperature ramping rate was 10 °C/min. After cooling to the room temperature, the ceria nanoparticles were obtained.

Figure S3 (a) Typical TEM image of ceria nanoparticles, (b) CO oxidation property of ceria nanoparticles and CeO₂-NR-8.

Figure S4 (a) XPS spectra of the Ce 3d core level of ceria nanoparticles.