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Materials and Methods: 
Density-functional theory (DFT) simulations – We used the exchange-correlation functional of 
Perdew, Burke, and Ernzerhof and the real-space grid DFT code GPAW (43–45). The code was 
used in the local basis mode (LCAO) with a double-zeta polarized basis, which speeded up the 
computations but still gave accuracy comparable to the full grid for our purposes. Grid spacing 
was 0.2 Å, Fermi broadening was 0.05 eV, and the k-space was sampled at the 𝛤-point. The 
vertical dimensions in the simulation cells were non-pediodic and their lengths were 16 Å. The 
lattice constant for infinite and close-packed 2D Au was 2.8 Å. Relativistic DFT simulations 
used the standard projector augmented wave (PAW) setups generated by scalar-relativistic 
calculation of the Au atom, as usual (46). Nonrelativistic DFT simulations used PAW setups and 
LCAO basis functions that were generated by a similar procedure with default parameters, apart 
from the Au atom that was solved using nonrelativistic formalism. 

Density-functional tight-binding (DFTB) simulations – DFTB derives its parametrizations 
directly from ab initio electronic structure methods without semi-empirical fitting (47, 48), and is 
the method of choice when long-running molecular dynamics simulations are required. The 
DFTB Au parametrizations, established earlier, turned out to provide a fair description of the 
electronic structure in small nanostructures (22). There are quantitative differences, but the 
accuracy suffices for our qualitative purposes. In particular, parametrizations faithfully reproduce 
the propensity for planar bonding, which originates from enhanced 5d-6s orbital hybridization 
caused by relativistic contraction of core orbitals. This planar bonding and its origin, known from 
experiments and explained by DFT calculations, are reproduced also by DFTB (Fig. S1) (22, 26). 
Relativistic DFTB simulations used the parametrizations of Ref. (22), generated by scalar-
relativistic calculation of the Au atom, just as with PAW setup generation for DFT. The 
relativistic DFTB parametrization gave 2.9 Å for the lattice constant of infinite close-packed 2D 
Au. Nonrelativistic DFTB calculations used parametrizations that were generated by the standard 
procedure of Ref. (48), apart from the Au atom that was solved using nonrelativistic formalism 
(repulsion was fit to Au2 dimer and Au bulk with a 2.9 Å cutoff).  
The DFTB C parametrizations were adopted from Ref. (47) and Au-C parametrizations were 
made following the standard procedure of Ref. (48): The parameters for quadratic confinements 
were 𝑟! = 2.52 Å for Au and 𝑟!=1.41 Å for C, and the repulsion (with 2.65 Å cutoff) was fitted 
to dimer (AuC) and Au-benzene (C6H5Au) structures of varying Au-C bond lenghts (with PBE-
DFT energies). As benchmark examples, the adsorption energy of Au in graphene single vacancy 
was 3.4 eV in DFTB and 3.0 eV in DFT (16), and the adsorption energy of Au in the zigzag edge 
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of graphene was 3.9 eV in DFTB and 3.4 eV in DFT (15). The agreement is satisfactory, given 
that also DFT numbers are functional-dependent. For systems with both Au and C atoms we used 
self-consistent charge (SCC) DFTB (49). For systems with only Au we could use a non-SCC 
approach without compromising accuracy because charge transfer was so small.  

 
Molecular dynamics (MD) simulations – MD simulations used a 2.5 fs time step (5 fs for 
systems with Au only) and a Langevin thermostat. The thermostat used a 5 ps damping time 
(proportional to the inverse of friction coefficient), which was sufficiently large to rid all 
thermostat-induced artifacts in the atomic diffusion (Fig. S2A). Regarding atom diffusion in the 
periodic 2D Au, the most critical parameter was the lateral size of the cell. A cell with 64 atoms 
(size 23.5  Å×20.4  Å) showed convergent behavior with respect to both diffusion and mean 
cohesion (Figs. S2, B and C). All 2D Au simulations begun with 25 ps equilibration and 
completed with 0.25 ns data collection. Diffusion constant 𝐷 was calculated via mean square 
displacement 𝑟! = 4𝐷𝑡 for the selected set of atoms (50). The velocity autocorrelation  

𝑧 𝑡 =
〈𝑣 𝑡! ⋅ 𝑣(𝑡 − 𝑡!)〉
〈𝑣 𝑡! ⋅ 𝑣 𝑡! 〉

, 

where 𝑣(𝑡) is the 3𝑁-dimensional velocity vector, was averaged over 50 randomized initial 
times 𝑡! within the given trajectory. The pair correlation function was calculated as 𝑔 𝑟 =

𝛿!(𝑟 − 𝑟!")!" /(2𝜋𝑟𝜎), where 𝜎 is the atom density and 𝛿!(𝑟) is a Gaussian with a broadening 
𝑑 = 0.25 Å. 
 

Bending rigidity of 2D Au and Au-C interface –The bending rigidity of the 2D Au was 
calculated by three approaches. First, Au tubes with radii of curvature below 𝑅 = 1.2 nm were 
calculated both by DFT and DFTB (10 k-points for a tube of 5.1 Å periodic length). DFTB 
appeared to give a reasonable, even if slightly underestimated bending rigidity of 2D Au 
membrane when compared to DFT (Fig. S3A). This is in line with Fig. 4 in the main text. 
Second, following the procedure of Refs. (51) and (52), revised periodic boundary conditions 
(RPBC) were used to simulate the bending of an infinite 2D Au (one-atom cell with 10×10 k-
points)(53). Fitting to radii of curvature above 20 Å yields static bending modulus of 0.45 eV, 
and extrapolating to radii of curvature below 20 Å yields the energies of Au tubes in satisfactory 
agreement (considering that tubes contain finite-size effects absent in RPBC simulations). Third, 
RPBC approach with Au64 was used to calculate the temperature-dependence of the bending 
modulus. The modulus at given temperature was calculated by fitting the 𝑅!!-behavior to a set 
of 0.5 ns simulations at 𝑅 =20, 30, 50, 100, and 200 Å. Strain contributions that arose from slow 
radial movement of the membrane were removed prior to the fitting (the elastic modulus of 2D 
Au was 5.71 eV/Å2). As a result, the bending rigidity increased at the rate 0.1 meV/K upon 
increasing temperature (Fig. S3B). Bending rigidity of the molten phase was not calculated, 
because it would have required inaccessibly long simulations. The bending rigidity of Au-C 
interface, as estimated from a periodic slab calculation, was approximately the same as that of 
2D Au (Fig. S4). 
  



Size-dependent stability analysis for patches suspended in graphene pores – Following Ref. 
12, the stability of patches was estimated by the energy difference of pore-suspended patch and a 
three-dimensional nanocluster. The energy difference of a square patch of edge length 𝐿 and a 
cubic nanocluster with the same number of atoms is 

𝛥𝐸 = 𝐿! 𝜀!! − 𝜀!! /𝐴! + 4𝐿𝜀!" − 6 𝑉! 𝐴!
!
!𝐿

!
!  𝜀!"#$ 

where (using DFTB values) 𝜀!! = −3.3 eV is the 2D binding energy per atom, 𝜀!! = −3.6 eV 
is the 3D binding energy per atom (FCC bulk), 𝐴! = 7.3 Å2 is the area per atom in 2D, 𝑉! = 23 
Å3 is the volume per atom in 3D (FCC bulk), 𝜀!" = −0.7 eV/Å is the binding energy of Au-C 
interface (averaged over few randomized interfaces), and 𝜀!"#! = 0.08 eV/Å2 is the surface 
energy (average over different facets). At small sizes the patch is energetically favorable 
(𝛥𝐸 < 0) due to the interface energy that is negative and linear in 𝐿. At larger sizes the 3D 
cluster becomes increasingly more favorable because of the 3D bulk term. The critical size above 
which the 3D clusters become energetically more favorable (𝛥𝐸 = 0) occurs around 𝐿 ≈20 nm. 

 

Curvature-dependent melting temperature – The effect of curvature on the melting 
temperature of 2D Au was investigated by simulating Au cage clusters with 18, 32, 50, and 72 
atoms. Unlike carbon fullerenes, the biggest of these golden cage-like isomers are most likely 
metastable and thus not seen in experiments (19, 54, 55). However, MD simulations at various 
temperatures showed that within 0.1 ns the clusters retained their cage-like geometries even 
though they were in liquid phase at the same time (Fig. S5A). Moreover, cage-like clusters 
showed reduced melting temperatures, apparently because in a curved surface the atoms had 
more freedom to move towards the convex side and thus they could overcome diffusion barriers 
more easily. This decrease in the melting temperature turned out to be directly proportional to the 
curvature (Fig. S5B). 

 
Figures S1-S5: 

 
Fig. S1. The planar bonding trends in small gold clusters with DFTB. Relativistic (left) and 
nonrelativistic (right) calculations of the cohesive energy per atom for 2D and 3D low-energy 
cluster isomers from global optimization (few isomers shown for each cluster size). The 
transition from 2D to 3D ground state shifts from 𝑁 ≈ 6 to 𝑁 ≈ 15 upon switching on the 
relativity; relativity thus favors 2D bonding. 



 

 
Fig. S2. Convergence of simulation parameters. (A) Diffusion constant as a function of Langevin 
damping time for Au64 at 1300 K and 4 % area strain. Dashed line is a sketch for a general trend. 
(B) Diffusion constant as a function of simulation cell size at three temperatures. (C) Mean 
cohesive energy per atom as a function of cell size at three temperatures.  
 

 
 

 
 

 
Fig. S3. Bending rigidity of 2D Au. (A) Bending energy as a function of radius of curvature for 
bent 2D Au (lower inset; one atom in unit cell using RPBC approach) and Au tubes (upper inset; 
28− 52 atoms in unit cell). A fit above 20 Å yields bending modulus of 0.45 eV (solid line). 
Extrapolation below 20 Å (dashed line) gives a rough agreement with small-diameter tubes. (B) 
Bending modulus of 2D Au as a function of temperature (Au64 RPBC simulations with DFTB). 
Errorbars are from the error analysis of fitting.  
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Fig. S4. Bending rigidity of Au-C interface. Plot shows the energy density of one Au-C interface 
as a function of the kink angle 𝜃, as calculated by decreasing the length 𝐿! of a periodic cell that 
contains two rigid bodies made of Au and C slabs (C: length 3.2 nm; Au: length 2.1 nm; width 
2.5 Å; 1×6 k-point sampling). By normalizing the energy to the surface area of the interface, one 
obtains bending modulus of 𝜅!"!! = 0.54 eV (solid line), essentially the same as that of 2D Au 
(Fig. S3).  
 

 
 

 

Fig. S5. Effect of curvature on melting temperature. (A) Radial atom densities of gold cages 
averaged over 50 ps simulations showing the cavities in the centers of mass. Clusters have 18, 
32, 50, and 72 atoms. Insets: snapshots and atom trajectories. (B) Melting temperature as a 
function of inverse of curvature radius. The criterion for liquid was 𝐷 > 0.1 Å2/ps; the melting 
temperature at zero curvature was adopted from 2D Au simulations. 
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