Supplementary Information

Few-layered titanium trisulfide (TiS₃) field-effect transistors

Alexey Lipatov,^{*a*} Peter M. Wilson,^{*a*} Mikhail Shekhirev,^{*a*} Jacob D. Teeter,^{*a*} Ross Netusil,^{*a*} and Alexander Sinitskii*^{*a*,*b*}

^aDepartment of Chemistry, University of Nebraska – Lincoln, Lincoln, NE 68588, USA ^bNebraska Center for Materials and Nanoscience, University of Nebraska – Lincoln, Lincoln, NE 68588,

USA

*E-mail: sinitskii@unl.edu

Contents

1.	Experimental Details	2
	1.1. Materials	2
	1.2. Methods	2
2.	XRD results	4
3.	Additional SEM characterization of TiS ₃ whiskers	5
4.	Raman spectroscopy	6
5.	Microscopic characterization of TiS ₃ FETs	6
6.	Four-point probe measurements	7
7.	Effect of Al ₂ O ₃ ALD on electronic properties of TiS ₃ FETs	8

1. Experimental Details

1.1. Materials

Ti foil (99.99+%, thickness ~ 0.25 mm) was received from Alfa Aesar. Sulfur (99.5+%) was received from Sigma-Aldrich. Heavily doped p-type silicon wafers covered with 300 ± 15 nm thick SiO₂ were received from Silicon Quest International.

For electron-beam lithography we used PMMA950 A4 (4% polymethyl methacrylate in anisole, MicroChem Corp.), methyl isobutyl ketone : isopropanol (1:3) (MIBK:IPA, MicroChem Corp.), isopropanol (99.5+%, Sigma-Aldrich), and acetone (99.7%, Fisher Scientific).

For electron-beam deposition we used chromium (Cr, 99.999%) and gold (Au, 99.999%), both of which were received from International Advanced Materials.

For atomic layer deposition we used trimethylaluminum (98%, Strem Chemicals) and nanopure water (18.2 M Ω ·cm resistivity at 25 °C).

1.2. Methods

<u>Single-Crystal X-Ray Diffraction (XRD).</u> X-ray intensity data was collected on a Bruker Smart Apex single-crystal diffractometer equipped with a Smart Apex CCD area detector and a graphitemonochromated MoK α radiation ($\lambda = 0.071073$ nm). Orientation matrix and unit cell parameters were derived using APEX2 software (Bruker (2007) APEX2, 2011.4-1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2011)

Device fabrication. PMMA was spin-coated on the Si/SiO₂ substrates with TiS₃ nanoribbons at 5000 rpm for 45 sec. The wafers were then placed on a hotplate at 180 °C for 120 sec and cooled for 1 min. A Zeiss Supra 40 Field-Emission Scanning Electron Microscope and a Raith Pattern Generator were used to pattern electrodes on TiS₃ nanoribbons using electron-beam lithography. The substrates were then developed using MIBK:IPA mixture for 60 sec, rinsed with isopropanol, and dried with nitrogen gas. An AJA E-beam system was used to evaporate chromium at 0.2 Å/sec until a thickness of 3 nm (measured by a quartz crystal microbalance) was achieved. Cr evaporation was followed immediately by evaporation of 20 nm of gold at 0.5 Å/sec. The liftoff treatment to remove PMMA and excess metals consisted of submerging samples in hot acetone for 5 min, rinsing with isopropanol and then water, and drying with nitrogen gas.

<u>Atomic layer deposition (ALD).</u> The ALD process was carried out for 280 cycles at a temperature of 150 °C using a Fiji 200 ALD reactor from Cambridge Nanotech Inc. Trimethylaluminum and nanopure water were each pulsed at 60 msec, with each pulse followed by a 30 sec purge time. This procedure resulted in an Al_2O_3 dielectric layer of about 30 nm in thickness.

<u>Atomic Force Microscopy (AFM).</u> All AFM images were collected in a tapping mode using a Digital Instruments Nanoscope IIIa Dimension 3100 scanning probe microscope. The AFM data were analyzed using Nanoscope Analysis software.

<u>Scanning Electron Microscopy (SEM)</u>. SEM was performed using a Zeiss Supra 40 Field-Emission Scanning Electron Microscope at an accelerating voltage of 5 kV.

<u>Electrical measurements.</u> Electrical measurements were performed using a Lake Shore TTPX cryogenic probe station at the base pressure of ~1×10⁻⁶ Torr. The device electrodes were connected to an Agilent 4155C semiconductor parameter analyzer that was linked to a computer through 82357B USB/GPIB interface and controlled using a National Instruments LabView code. In all measurements the drain-source voltage was $V_{DS} = 0.1$ V.

<u>Raman spectroscopy</u>. Raman spectra were recorded using a Thermo Scientific DXR Raman microscope with a 532 nm laser.

2. XRD results

Nominal composition	TiS ₃			
Calculated density (g/cm ³)	3.30			
Source radiation, nm	ΜοΚα; 0.071073			
Space group	$P 2_{l}/m$ (No 11)			
Pearson symbol	mP8			
a (nm)	0.4948(7)			
b (nm)	0.3379(5)			
<i>c</i> (nm)	0.8748(12)			
β (°)	97.62(2)			
Cell volume (nm ³)	0.1449(14)			
Formula units	Z = 2			
Structure prototype	ZrSe ₃			
Index range	$-6 \le h \le 5$			
Inday ranga	$-4 \le k \le 4$			
Reflections in refinement	$-11 \le l \le 11$			
Kenections in refinement	$435 \ge 3\sigma(I_o)$ of 702			
Number of variables	21			
$R_{F}^{2} = \Sigma F_{0}^{2} - F_{c}^{2} / \Sigma F_{0}^{2}$	0.125			
wR ²	0.146			
GOF	2.13			

Table S1: X-Ray single crystal data at room temperature for TiS₃ single crystal.

Table S2: Atomic and	l anisotropic	displacement	parameters for	TiS ₃
----------------------	---------------	--------------	----------------	------------------

Atom	Wyckoff	х	у	Z	Anisotroj	pic displace	ment (Å ²)
	position				U_{11}	U ₂₂	U ₃₃
Ti1	2e	0.2872(9)	1/4	0.1510(4)	0.0088(19)	0.005(2)	0.023(2)
S 1	2e	0.4614(12)	1/4	0.025(3)	0.025(3)	0.010(3)	0.002(2)
S2	2e	0.7601(11)	1/4	0.0514(6)	0.007(3)	0.005(3)	0.018(2)
S3	2e	0.8883(11)	1/4	0.6730(5)	0.011(2)	0.006(3)	0.0010(19)
$U_{12} = U_{13} = U_{23} = 0$							

These data can also be accessed in a CIF file that is provided separately.

3. Additional SEM characterization of TiS₃ whiskers

Figure S1. (a) SEM image of TiS_3 whiskers. **(b)** Width distribution of TiS_3 whiskers based on SEM image shown in (a) and similar SEM images.

4. Raman spectroscopy

Figure S2. Raman spectra of a free-standing TiS_3 whisker (blue) and a 4-nm-thick exfoliated TiS_3 flake on Si/SiO_2 substrate (red). Raman spectrum of Si/SiO_2 substrate (black) is shown as a reference.

5. Microscopic characterization of TiS₃ FETs

Figure S3. SEM and AFM images of few-layer TiS₃ FETs that were fabricated and tested in this study.

6. Four-point probe measurements

We fabricated two multi-terminal TiS₃ devices that are shown in Figures S4a and S5a. Each device is based on a single exfoliated TiS₃ nanoribbon that bridges four Cr/Au electrodes. For this device configuration we needed TiS₃ flakes that were at least 20 μ m long, which were generally thicker and wider than shorter TiS₃ flakes that were used for the fabrication of two-terminal devices reported in this study (see Figures 2 and S3). As demonstrated by the AFM data presented in Figures S4b,c and S5b,c, the TiS₃ ribbons used for the contact resistance measurements had widths of 0.17 and 0.32 μ m, respectively, and were less than 40 nm thick. Figures S4d and S5d show conductivity (σ) – gate voltage (V_G) dependences that were measured using a four-point probe method. The calculated field-effect mobilities, 21.1 and 24.2 cm²V⁻¹s⁻¹, are comparable to the values measured for two-terminal devices (Figure 2e). Because of the substantial thickness of long TiS₃ nanoribbons, and thus their high conductivity, the ON/OFF ratios of these devices were very low, so these devices were not used for Al₂O₃ ALD experiments.

Figure S4. (a) SEM image of a multiterminal TiS_3 device. **(b)** AFM image of the TiS_3 nanoribbon connecting two inner Cr/Au electrode is (a). **(c)** Representative height profile measured across the TiS_3 nanoribbon shown in (b). **(d)** Conductivity (σ) – gate voltage (V_G) dependence for the TiS_3 device shown in (a) measured by four-point probe method.

Figure S5. (a) SEM image of a multiterminal TiS₃ device. **(b)** AFM image of the TiS₃ nanoribbon connecting two inner Cr/Au electrode is (a). **(c)** Representative height profile measured across the TiS₃ nanoribbon shown in (b). **(d)** Conductivity (σ) – gate voltage (V_G) dependence for the TiS₃ device shown in (a) measured by four-point probe method.

Figure S6. ALD of Al₂O₃ on TiS₃ FETs. For all measurements $V_{DS} = 0.1$ V. (**a,b**) Comparison of the drainsource current (I_{DS}) – gate voltage (V_G) dependencies for (a) TiS₃ device #2 and (b) TiS₃ device #3 before and after ALD of Al₂O₃. (**c**) Comparison of the subthreshold swing (S) values for all four devices (see Figure S3) before and after ALD of Al₂O₃.