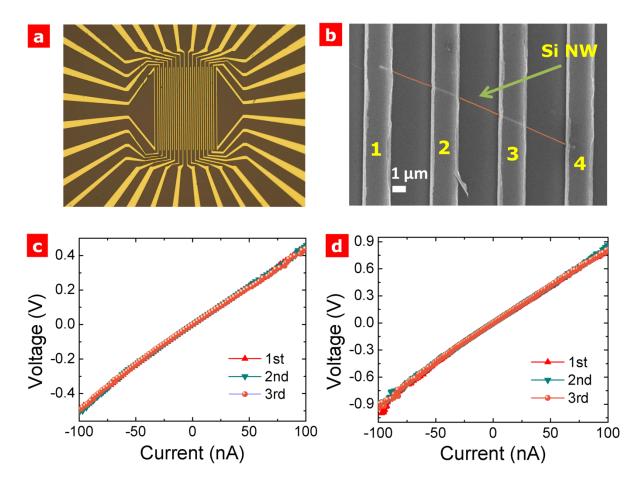
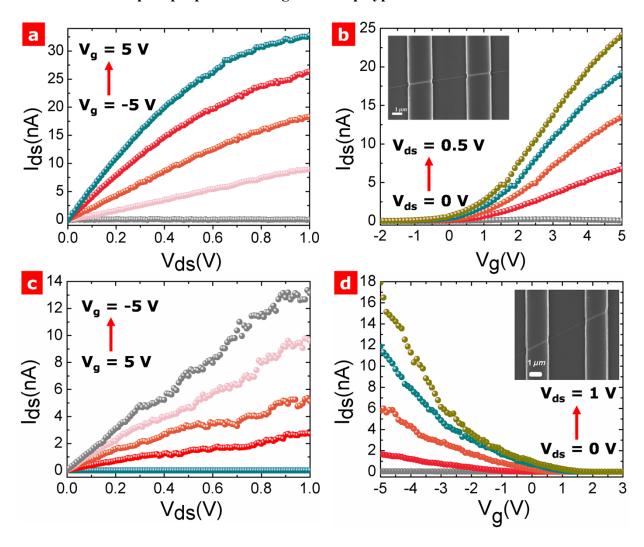
Supporting Information


Ultralow-power Non-volatile Memory Cells based on P(VDF-TrFE) Ferroelectric-gate CMOS Silicon Nanowire Channel Field-Effect Transistors

By Ngoc Huynh Van, Jae-Hyun Lee¹, Dongmok Whang¹ and Dae Joon Kang*

[*] Prof. Dae Joon Kang, Ngoc Huynh Van Department of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea. E-Mail: djkang@skku.edu


Jae-Hyun Lee, Prof. Dongmok Whang ¹School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

1. Four probe measurements

Fig. S1 (a) Optical and (b) FE-SEM images of Si NW FET devices; four probe measurements of n-type (c) and p-type (d) Si NWs.

The n-type Si NW resistance (R) of $4.44 \times 10^6 \Omega$ was extrapolated from the linear region of the current–voltage curve of four-probe measurements from Fig. S1c. The resistivity $\rho = 0.21 \Omega$ cm was calculated according to $\rho = RA/L$, where $A = \pi r^2$ is the Si NW cross section, L is the conducting channel length of the nanowire (~5 µm), and r is the radius of the nanowire (~27.5 nm). The resistance, $R = 8.1 \times 10^6 \Omega$, and resistivity, $\rho = 0.38 \Omega$ cm, were calculated for p-type Si NWs from Fig. S1d.

2. Electrical transport properties of single n- and p-type Si NW FET devices

Fig. S2 Electrical transport properties of single n- and p-type Si NW FET devices at ambient conditions. (a), (c) $I_{ds}-V_{ds}$ output characteristics and (b), (d) $I_{ds}-V_g$ transfer characteristics of n- and p-type Si NW FETs, respectively.

To investigate the electrical properties of n-type and p-type Si NWs, we prepared typical NW FETs on a 100 nm thick SiO₂ layer on a heavily boron doped Si (p++ Si) substrate; the a-Si acted as a back gate electrode. Figure S2a shows the drain current versus drain-source voltage ($I_{ds}-V_{ds}$) curves for a single n-type Si NW FET. The conductance of the NW increases monotonically as the gate potential increases from -5 V to +5 V, exhibiting a typical n-type Si NW FET behavior.

Figure S2b shows the drain current versus gate-source voltage $(I_{ds}-V_g)$ curves obtained by sweeping the gate voltage continuously from -5 V to 5 V at a drain voltage ranging from 0 to 0.5 V. The transconductance (g_m) and field effect electron mobility (μ_e) of the back gate NW FETs were determined from the $I_{ds}-V_g$ curves using the following equations: $g_m = dI_{ds}/dV_g$ and $\mu_e =$ $g_m L^2/C_{ox} V_{ds}$.¹ The gate oxide capacitance (C_{ox}) of a cylindrical wire on a planar substrate can be estimated by $C_{ox} = 2\pi \varepsilon_r \varepsilon_0 L/\cosh^{-1}(1 + t_{ox}/r)$ using a relative dielectric constant (ε_r) of 3.9, a SiO₂ gate dielectric layer thickness (t_{ox}) of 100 nm, a nanowire conducting channel length (L) of approximately 5 µm, and a nanowire radius (r) of approximately 27.5 nm. For n-type Si NW FETs on a SiO₂/Si substrate, a threshold voltage (V_{th}) of -1 V and a transconductance (g_m) of 9.7 nS were extrapolated from the linear region of the $I_{ds}-V_g$ curve at a value of 0.5 V for the V_{ds} . The field-effect electron mobility (μ_e) and resistivity (ρ) for Si NW was calculated from four-probe measurements and found to be 9.9 cm² V⁻¹ s⁻¹ and 0.21 Ω cm, respectively (Fig. S1c). Electron carrier concentration (n_e) was calculated to be 2.58 \times 10¹⁷ e/cm³ using the equation, $n_e = C_{ox}V_{th}/e\pi r^2 L^2$ The subthreshold swing given as $S.S = log[dV_g/d(logI_{ds})]$ was estimated to be 168 mV dec⁻¹.

The same calculation method is applicable for p-type Si NW FETs. A V_{th} of 1 V, g_m of 14.1 nS, and a field effect hole mobility (μ_h) of 7.2 cm² V⁻¹ s⁻¹ were calculated from Fig. S2c and d, and ρ was estimated to be 0.38 Ω cm from four-probe measurements (Fig. S1d in the Supporting Information). Hole carrier concentration (n_h) was estimated to be 2.58 × 10¹⁷ h cm⁻³ using the equation $n_h = C_{ox}V_{th}/q\pi r^2 L$.² The subthreshold swing (*S.S*) value was approximately 216 mV dec⁻¹. The subthreshold swing values of n-type and p-type Si NW FETs are small enough for low power consumption devices.

References

- 1 L. Liao, H. J. Fan, B. Yan, Z. Zhang, L. L. Chen, B. S. Li, G. Z. Xing, Z. X. Shen, T. Wu, X. W. Sun, J. Wang, T. Yu, *ACS Nano*, 2009, **3**, 700-706.
- 2 J. Goldberger, D. J. Sirbuly, M. Law, P. Yang, J. Phys. Chem. B, 2005, 109, 9-14.