Supporting information for

Quenching of the upconversion luminescence of NaYF₄: Yb³⁺, Er³⁺ and NaYF₄: Yb³⁺, Tm³⁺ nanophosphors by water: the role of the sensitizer Yb³⁺ in non-radiative relaxation

Riikka Arppe,*^a Iko Hyppänen,^b Niina Perälä,^a Riikka Peltomaa,^a Martin Kaiser,^c Christian Würth,^c Simon Christ,^{a,d} Ute Resch-Genger,^c Michael Schäferling,^{a,c} and Tero Soukka^a

*Corresponding author: E-mail: riikka.arppe@utu.fi

^aUniversity of Turku, Department of Biotechnology, 20014 Turun yliopisto, Turku, Finland

^bUniversity of Turku, Department of Chemistry, Laboratory of Materials Chemistry and Chemical Analysis, Vatselankatu 2, 20014 Turun yliopisto, Turku, Finland

^cBAM Federal Institute of Materials Research and Testing, Division 1.10 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany

^dUniversity of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, 93040 Regensburg, Germany

Content:

Figure S1 Transmission electron micrographs of the bare and silanized upconverting nanophosphors.

Figure S2 a) X-ray powder diffraction spectra of the NaYF₄: Yb³⁺, Er^{3+} and NaYF₄: Yb³⁺, Tm³⁺ nanophosphors, and b) FT-IR spectra of oleic acid capped and bare UCNPs.

Figure S3 The repetitiveness study of the luminescence lifetime measurement.

Figure S4 Decay curves of upconversion emission of bare NaYF₄: Yb³⁺, Er³⁺ at 535 nm at time point 1–6 min, 10–16 min and 25–31 min after diluting to 99 vol% H₂O or 75 vol% H₂O in D₂O, or to 100 vol% D₂O.

Figure S5 Upconversion luminescence spectra of bare NaYF₄: Yb³⁺, Er^{3+} nanophosphors in D₂O and in H₂O at increasing excitation power densities

Table S1Decay times and amplitude fractions of upconversion emission of bare NaYF4: Yb³⁺, Er^{3+} at 535 nm at different time points after diluting to different proportions of H2O in D2O.

Figure S1. Transmission electron micrographs of a) bare and c) silanized NaYF₄: Yb³⁺, Er³⁺ and b) bare and d) silanized NaYF₄: Yb³⁺, Tm³⁺ nanophosphors (JEM-1400+ TEM, 80 kV, JEOL, Tokyo, Japan). Scale bar 100 nm.

Figure S2. a) X-ray powder diffraction spectra of the NaYF₄: Yb³⁺, Er³⁺ and NaYF₄: Yb³⁺, Tm³⁺ nanophosphors, and the reference pattern of hexagonal NaYF₄: Yb³⁺, Er³⁺ (Huber G670, Huber Diffraktionstechnik GmbH & Co. KG, Rimsting, Germany). b) FT-IR spectra of oleic acid (OA) – capped and bare a UCNPs (Vertex 70, Bruker Optics, Billerica, MA). The spectrum of OA-capped UCNPs shows CH₂ and COOH stretches, which are absent in the spectra of bare UCNPs.

Figure S3. The repetitiveness of the luminescence lifetime measurement of bare NaYF₄: Yb³⁺, Er^{3+} nanophosphors in water at 544 nm upon excitation at 980 nm with 20 ms pulse width. The two measurements were performed on the same sample eight days apart.

Figure S4. Decay curves of upconversion emission of bare NaYF₄: Yb³⁺, Er³⁺ at 535 nm at time point 1–6 min (black), 10–16 min (red) and 25–31 min (blue) after diluting from D₂O to a) 99 vol% H₂O and b) 75 vol% H₂O in D₂O, or c) 100 vol% D₂O using 20 ms excitation pulse width. Insert: Normalized decay curves.

	1 – 6 min	10 – 16 min	25 – 31 min
99 vol% Water			
τ_1 (µs)	94 ± 2.5 (76.5 %)	83 ± 2.9 (76.7 %)	$67 \pm 4.0 \ (76.0 \ \%)$
τ_2 (µs)	316 ± 11.9 (20.9 %)	288 ± 13.2 (20.4 %)	261 ± 36.6 (22.4 %)
τ ₃ (μs)	778 ± 4.8 (2.6 %)	706 ± 35.5 (2.9 %)	728 ± 508 (1.6 %)
75 vol% Water			
τ ₁ (μs)	$104 \pm 2.7 \ (80.7 \ \%)$	97 ± 3.0 (79.3 %)	83 ± 3.4 (81.0 %)
τ ₂ (μs)	344 ± 17.1 (17.6 %)	319 ± 15.8 (18.8 %)	284 ± 20.6 (16.4 %)
τ ₃ (μs)	873 ± 75.5 (1.7 %)	846 ± 60.5 (1.9 %)	690 ± 48.0 (2.6 %)
D ₂ O			
τ ₁ (μs)	159 ± 2.1 (83.1 %)	158 ± 1.8 (84.3 %)	154 ± 1.6 (84.6 %)
$\tau_2 (\mu s)$	353 ± 15.5 (15.9 %)	369 ± 13.1 (15.0 %)	369 ± 11.6 (14.7 %)
$\tau_3 (\mu s)$	994 ± 67.6 (1.0 %)	1175 ± 89.8 (0.7 %)	1174 ± 85.2 (0.7 %)

Table S1. Decay times and amplitude fractions of upconversion emission of bare NaYF₄: Yb³⁺, Er³⁺ at 535 nm at different time points after diluting to different proportions of H₂O in D₂O. Fitting range 100 μ s – 6 ms.

Figure S5. Upconversion luminescence spectra of bare NaYF₄: Yb³⁺, Er^{3+} nanophosphors a) in D₂O and b) in H₂O at increasing excitation power densities.