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S1. Models, definition and calculations of edge energies.

(a) Illustration of models and tests.

Composed with binary compositions, triangular BN structures with length, L = 2.008 nm 

(see Fig. S1a,b) were used to calculate the formation energies, γ, of pristine ZZB and ZZN 

edges, respectively. The influence from the corners (which does not scale with length of L) 

on γ was tested carefully (Table. S1). More details about calculations of edge energy are 

discussed below. From Table. S1 we can see that the results are well converged as L  1.506 

nm. The BNNR models (see Fig. S1c,d) were used to calculate γ of pristine AC edge and 

other reconstructed ones. 

Table S1 Edge energies of ZZB and ZZN of triangular BN patches with different length.

Length of each side of triangular BN patches 
(nm)

Edge energies of ZZB 
(eV/nm)

Edge energies of ZZN 
(eV/nm)

0.502 13.13 11.49

0.753 13.00 11.06

1.004 12.98 10.90

1.255 12.96 10.93

1.506 12.97 10.87

1.757 12.97 10.88
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Fig. S1 Representative structures used to calculate formation energies of different edges: (a) 

pristine zigzag edges terminated with N, (b) pristine zigzag edges terminated with B, (c) 

pristine and reconstructed armchair edges, (d) reconstructed zigzag edges.

(b) Formation energies of pristine edges.

Unlike graphene, there are three basic edges in BN due to its binary compositions, the edge 

terminated with N (ZZN), terminated with B (ZZB), and armchair edges (AC). The stabilities 

of edges can be characterized by their formation energies, i.e., edge energies, γ. A common 

way to obtain edge energies is to subtract the energy of equivalent material in its bulk from 

the total slab energy,1, 2 which can be obtained from density functional theory calculations. 

Representative structures used to calculate edge energies are shown in Fig. S1. For 

pristine/reconstructed armchair edges, the energies are defined from equation 1. For pristine 

zigzag edge terminated with B (N), the energy can be obtained from equation 2 (3). 
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                    (4)
𝛾𝑍𝑍𝑁57 =

𝐸𝑍𝑍 ‒ 𝑀𝐵𝑁𝜇𝐵𝑁

𝐿
‒ 𝛾𝑍𝑍𝐵

where EAC, E, E, and EZZ is the total energy of an optimized BN structure, MBN is the 

number of BN pairs,  (-17.57 eV) is the energy of BN pair in BN sheet, L is the length of 𝜇𝐵𝑁

BN edges in units of nanometer, and the factors account for identical edges in each model 

considered. With edge energies of pristine ZZB and ZZN at hand, it is easy to obtain those of 

reconstructed zigzag edges. Take ZZN57 as an example, the edge energy can be obtained 

from equation 4. 

(c) Edge energies at different chemical potentials.
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Suppose BN = B + N, the chemical potentials of B and N can be written as B = 0.5BN + 

Δ and N = 0.5BN − Δ, where Δ = (μB - μN)/2.3 By choosing the elemental chemical 

potentials as equal, μB = μN = 0.5μBN, that is Δ = 0, we determine the values  

 and . Now, we can obtain energies for the basic edges of 𝛾 0
𝑍𝑍𝐵 = 12.96 𝑒𝑉/𝑛𝑚 𝛾 0

𝑍𝑍𝑁 = 10.87 𝑒𝑉/𝑛𝑚

BN at arbitrary chemical potentials:

                            (5)𝛾𝐴𝐶 = 7.57 𝑒𝑉

                          (6)
𝛾𝑍𝑍𝐵 = 12.96 ‒

∆𝜇
3

                          (7)
𝛾𝑍𝑍𝑁 = 10.87 +

∆𝜇
3

For other edges with B/N added,  is added (submitted) from corresponding edge energies. Δ

And it is contrary in the case with B (N) substituted. The results are listed in Table S1.

 (d) Formation energies of edges terminated with H atoms.

In this work, we also consider the edges terminated with hydrogen atoms to mimic possible 

situations in experiments. Here, we only consider the case with each edge atom saturated with 

one H for simplicity although we notice Ding and coworkers have studied the pristine BNNR 

edges as a function of H−passivation4. We find it is efficient enough to eliminate the 

influence of triple bond on the edges. In this case, take ZZB as another example, the edge 

energy can be obtained from equation 9, which is similar with equation 2 except that E is the 

total energy of BN structure saturated with H, nH is the number of H atoms, μH is the 

chemical potential of hydrogen, which can be obtained from the DFT calculated energy of H2 

(-6.76 eV),

                     (9)
𝛾𝑍𝑍𝐵 =

𝐸


‒ 𝑀𝐵𝑁𝜇𝐵𝑁 ‒ 𝐿𝜇𝐵 ‒ 𝜇𝑁 ‒ 𝑛𝐻𝜇𝐻

3𝐿

The chemical potential of hydrogen is highly dependent on the temperature and the 

pressure. The temperature (and pressure) dependence of μH can be written as,5, 6

         (10)
2𝜇𝐻 =  𝐸𝐻2 ‒ 𝑘𝑇𝑙𝑛(𝑘𝑇

𝑝
× 𝑔 × 𝜁𝑡𝑟𝑎𝑛𝑠 × 𝜁𝑟𝑜𝑡 × 𝜁𝑣𝑖𝑏) 
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where EH2 is DFT calculated energy of H2 (-6.76 eV), k is Boltzmann constant, p is partial 

pressure of H2, and g is the degeneracy degree of the electron energy level. ζtrans, ζrot and ζvib 

are the partition functions for translational, rotational, and vibration motions, respectively. 

Suppose the temperature equals to 1000 K, the pressure of H2 varies from 10-4 mbar to 102 

mbar, μH falls in the range [-4.74 eV, -4.15 eV]. Substitute -4.74 and -4.15 into Eqn.9, we can 

get edge energies of ZZB at (1000 K, 10-4 mbar) and (1000 K, 102 mbar) respectively.

(e) Edge energies at different crystallographic directions.

With the basic energies along the armchair and zigzag crystallographic directions, it is 

convenient to obtain all energies of arbitrary edges using the following analytical 

expressions,3, 7 

                      (8)𝛾(𝜒) = |𝛾0|𝑐𝑜𝑠⁡(𝜒 + 𝐶)

|𝛾0| = 2 (𝛾𝐴𝐶
2 + 𝛾𝑍𝑍𝑋

2 ‒ 3𝛾𝐴𝐶𝛾𝑍𝑍𝑋)

, 0 < χ < 30 °;
tan 𝐶 =

3𝛾𝐴𝐶 - 2𝛾𝑍𝑍𝐵

𝛾𝐴𝐶

, -30 < χ < 0 °.
tan 𝐶 = ‒

3𝛾𝐴𝐶 ‒ 2𝛾𝑍𝑍𝑁

𝛾𝐴𝐶

where AC, ZZB, and ZZN are the basic energies along armchair edges and zigzag edges 

terminated with B and N, respectively.
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S2. Edge energies, band gaps (Eg), electronic and magnetic properties.

Table S2. Edge energies, magnetic properties and band gaps (Eg) of edges.

Bare H-terminated

Edge energies (eV/nm)

(eV/l)

Edge energies (eV/nm)

0 (Δ = 0) μH=-3.38
Edge types

Ours Ref.

0 (Δ ≠ 0)

Magnetic

properties

Eg (eV)

Ours Ref.

μH=-4.74c μH=-4.15c

ZZN 10.87 10.84a,* 𝛾0 + Δ𝜇 3 magnetic metallic -1.12 ~ -1.20a,* 5.95 3.13

ZZN57 10.29 𝛾0 + Δ𝜇 3 nonmagnetic 3.41 5.27 9.95 8.07

ZZN57´ 13.04 𝛾0 + Δ𝜇 3 magnetic metallic 7.08 11.75 9.87

ZZN+B 19.30 𝛾0 ‒ 2Δ𝜇 3 nonmagnetic 0.88 9.86 14.53 12.65

ZZN+B+N 12.51 𝛾0 + Δ𝜇 3 magnetic 4.60 9.27 7.39

ZZB 12.96 12.99a,* 𝛾0 ‒ Δ𝜇 3 magnetic metallic 3.39 ~3.19a,* 9.55 6.73

ZZB57 11.85 𝛾0 ‒ Δ𝜇 3 nonmagnetic 2.61 7.48 11.25 9.37

ZZB57´ Unstable 𝛾0 ‒ Δ𝜇 3 11.52 15.29 13.41

ZZB+N 9.87 𝛾0 + 2Δ𝜇 3 nonmagnetic 0.26 3.50 7.27 5.39

ZZB+B+N 12.23 𝛾0 ‒ Δ𝜇 3 magnetic 6.48 10.25 8.37

AC 7.57 7.57a,b,* 𝛾0 nonmagnetic 4.25 1.18 ~0.80a,* 7.44 4.72

AC677 11.91 𝛾0 nonmagnetic 3.15 7.84 14.09 11.37

AC677´ 12.79 𝛾0 nonmagnetic 2.68 7.69 13.93 11.22

AC+N 13.14 12.75a,* 𝛾0 + Δ𝜇 nonmagnetic 1.12 4.96 11.21 8.50

AC+B 15.20 15.14a 𝛾0 ‒ Δ𝜇 nonmagnetic 0.018 11.60 17.85 15.14

AC−Ns 9.18 𝛾0 + 2Δ𝜇 nonmagnetic 1.31 8.18 14.43 11.72

AC−Bs 22.58 𝛾0 ‒ 2Δ𝜇 magnetic 0.72 18.44 24.68 21.97

a data obtained or estimated from ref. 33; b data from ref. 6 multiplied with 10;

 c,d μH is calculated from Eq.10 at with pressure of 10-4 mbar and 102 mbar, respectively; * The data taken from literatures was recalculated in the unit of 

eV/nm.
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Fig. S2 (a-f) Band structures of BNNRs and LDOS (local density of states) of other edges 

mentioned in the text. The BNNRs are composed with edges of (a) ZZB and ZZN, (b) ZZB 

and ZZN57´, (c) AC677, (d) AC677´, (e) AC+B, and (f) AC+N, respectively. Spin density of 

BNNRs constructed with (g) AC-Bs (AFM, 2.0 uB/AC site and -2.0 uB /AC site on the other 

side), (h) ZZB and ZZN (FM, -1.83 uB/zz site), and (i) ZZN57´ (FM, 1.61uB/zz site). The 

Fermi level (dashed lines) is set to zero.  and X denotes the center and the boundary of the 

first Brillouin zone. The bands near Fermi level and LDOS induced by edges are highlighted 

with the same color except those possessing magnetism, where red means spin−up and blue 

represents spin−down.
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Fig. S3 (a-l) Band structures of BNNRs and partial charge density of specific bands at the 

 point. The Fermi level (dashed lines) is set to zero.  and X denotes the center and the 

boundary of the first Brillouin zone. The isosurface is 0.005e/Å3.
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