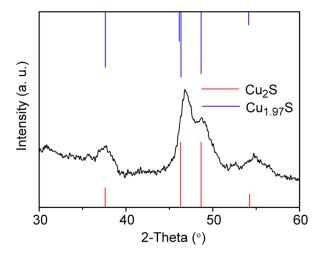
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2015


Electronic Supplementary Information

Aqueous Synthesis of PEGylated Copper Sulfide Nanoparticles for Photoacoustic Imaging of Tumors

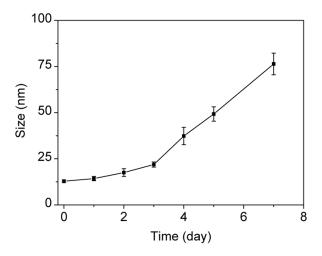
Ke Ding,^a Jianfeng Zeng,^b Lihong Jing,^a Ruirui Qiao,^{*a} Chunyan Liu,^a Mingxia Jiao,^a Zhen Li,^b and Mingyuan Gao^{*}

a Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.

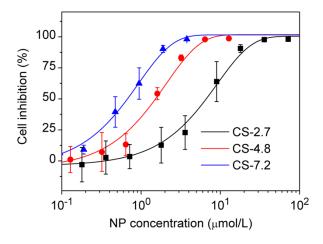
b School of Radiation Medicine and Protection, Medical College of Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, China.

Figure S1. XRD patterns of PEGylated copper sulfide nanoparticles (NPs). The vertical solid line shown below the pattern is standard bulk XRD data for chalcocite (Cu_2S) (JCPDS No. 31-0482), above the pattern is djurleite ($Cu_{1.97}S$) (JCPDS No. 20-0365).

Table S1. The experimental and theoretically predicted hydrodynamic sizes of the differently sized PEGylated copper sulfide NPs.


Sample	Experimental hydrodynamic size ^a (nm)	Theoretical hydrodynamic size ^b (nm)
CS-2.7	7.1 ± 0.1	8.1
CS-4.8	10.7 ± 0.3	10.1
CS-7.2	14.9 ± 0.4	12.6

^a Average results of three measurements.


^b The theoretical hydrodynamic sizes were obtained by assuming a simple addition of the core size and two times of the calculated hydrodynamic size of the PEG derivatives ($d_{\text{PEG}} = 0.03824 M_{\text{n}}^{0.559}$).¹

Synthesis of the TGA-capped copper sulfide NPs.

In brief, 0.092 g (1 mmol) of thioglycolic acid (TGA) was dissolved in 50 mL of water, and then 0.05 g (0.5 mmol) of CuCl was then introduced while stirring. Nitrogen gas was introduced to purge the reaction solution for 1 h. The pH value of the reaction mixture was adjusted to 9.00 by dropwise addition of 0.5 M NaOH aqueous solution. After that, 0.0187 g (0.25 mmol) of TAA was then introduced while stirring. The resultant mixture was then heated to 90°C, and the reaction was allowed for 2 h under nitrogen protection. Then the solution was cooled to room temperature. And the hydrodynamic size of TGA-capped copper sulfide NPs dispersed in water was characterized by dynamic light scattering.

Figure S2. Temporal evolution of the hydrodynamic size of the as-prepared TGA-capped copper sulfide NPs in water.

Figure S3. The concentration-dependent growth-inhibition of HeLa cells by copper sulfide NPs of 2.7 nm (black), 4.8 nm (red), and 7.2 nm (blue), respectively.

References

1 R. A. Sperling, T. Liedl, S. Duhr, S. Kudera, M. Zanella, C. A. J. Lin, W. H. Chang, D. Braun, W. J. Parak, *J. Phys. Chem. C*, 2007,**111**, 11552-11559.